978 resultados para hypertext markup language
Resumo:
In this thesis, the author presents a query language for an RDF (Resource Description Framework) database and discusses its applications in the context of the HELM project (the Hypertextual Electronic Library of Mathematics). This language aims at meeting the main requirements coming from the RDF community. in particular it includes: a human readable textual syntax and a machine-processable XML (Extensible Markup Language) syntax both for queries and for query results, a rigorously exposed formal semantics, a graph-oriented RDF data access model capable of exploring an entire RDF graph (including both RDF Models and RDF Schemata), a full set of Boolean operators to compose the query constraints, fully customizable and highly structured query results having a 4-dimensional geometry, some constructions taken from ordinary programming languages that simplify the formulation of complex queries. The HELM project aims at integrating the modern tools for the automation of formal reasoning with the most recent electronic publishing technologies, in order create and maintain a hypertextual, distributed virtual library of formal mathematical knowledge. In the spirit of the Semantic Web, the documents of this library include RDF metadata describing their structure and content in a machine-understandable form. Using the author's query engine, HELM exploits this information to implement some functionalities allowing the interactive and automatic retrieval of documents on the basis of content-aware requests that take into account the mathematical nature of these documents.
Resumo:
The Simulation Automation Framework for Experiments (SAFE) is a project created to raise the level of abstraction in network simulation tools and thereby address issues that undermine credibility. SAFE incorporates best practices in network simulationto automate the experimental process and to guide users in the development of sound scientific studies using the popular ns-3 network simulator. My contributions to the SAFE project: the design of two XML-based languages called NEDL (ns-3 Experiment Description Language) and NSTL (ns-3 Script Templating Language), which facilitate the description of experiments and network simulationmodels, respectively. The languages provide a foundation for the construction of better interfaces between the user and the ns-3 simulator. They also provide input to a mechanism which automates the execution of network simulation experiments. Additionally,this thesis demonstrates that one can develop tools to generate ns-3 scripts in Python or C++ automatically from NSTL model descriptions.
Resumo:
For various reasons, it is important, if not essential, to integrate the computations and code used in data analyses, methodological descriptions, simulations, etc. with the documents that describe and rely on them. This integration allows readers to both verify and adapt the statements in the documents. Authors can easily reproduce them in the future, and they can present the document's contents in a different medium, e.g. with interactive controls. This paper describes a software framework for authoring and distributing these integrated, dynamic documents that contain text, code, data, and any auxiliary content needed to recreate the computations. The documents are dynamic in that the contents, including figures, tables, etc., can be recalculated each time a view of the document is generated. Our model treats a dynamic document as a master or ``source'' document from which one can generate different views in the form of traditional, derived documents for different audiences. We introduce the concept of a compendium as both a container for the different elements that make up the document and its computations (i.e. text, code, data, ...), and as a means for distributing, managing and updating the collection. The step from disseminating analyses via a compendium to reproducible research is a small one. By reproducible research, we mean research papers with accompanying software tools that allow the reader to directly reproduce the results and employ the methods that are presented in the research paper. Some of the issues involved in paradigms for the production, distribution and use of such reproducible research are discussed.
Resumo:
One of the main roles of the Neural Open Markup Language, NeuroML, is to facilitate cooperation in building, simulating, testing and publishing models of channels, neurons and networks of neurons. MorphML, which was developed as a common format for exchange of neural morphology data, is distributed as part of NeuroML but can be used as a stand-alone application. In this collection of tutorials and workshop summary, we provide an overview of these XML schemas and provide examples of their use in down-stream applications. We also summarize plans for the further development of XML specifications for modeling channels, channel distributions, and network connectivity.
Resumo:
Aufbau einer föderativen Dienstlandschaft in der Ruhr-Region auf Basis von SAML mit dem Ziel eine organisationsübergreifende Nutzung von webbasierten IT-Diensten zu ermöglichen
Resumo:
En este artículo se describe el proceso de diseño e implementación de la base de datos RVDynDB (Rail Vehicle Dynamic parameters DataBase), que pretende ser un extenso repositorio de los modelos de dominio público empleados en la simulación dinámica de vehículos ferroviarios en todo el mundo. Atendiendo a sus características de flexibilidad, extensibilidad e independencia de la plataforma, se ha escogido un modelo de datos XML, que facilita el almacenamiento de datos de procedencia muy heterogénea, al tiempo que permite compartir el contenido de la base de datos con otros usuarios a través de internet. Se ha presentado también el lenguaje RVDynML (Rail Vehicle Dynamic parameters Markup Language), que define la estructura de la información almacenada en la base de datos. Al ser un lenguaje basado en XML, con el tiempo podría llegar a convertirse en un estándar para el intercambio de datos sobre los principales parámetros constructivos que definen el comportamiento dinámico de los vehículos.Se han seleccionado 173 referencias bibliográficas, cuyos datos se han utilizado para construir la base de datos, constituida por un total de 957 registros. Finalmente, se ha desarrollado una aplicación específica con MATLAB para gestionar las búsquedas en la base de datos. Para ello se ha empleando una API de Java que proporciona una interfaz para el DOM, que permite permiten acceder, modificar, insertar o eliminar los elementos y atributos que componen un documento XML.
Resumo:
A día de hoy, XML (Extensible Markup Language) es uno de los formatos más utilizados para el intercambio y almacenamiento de información estructurada en la World Wide Web. Es habitual que las aplicaciones que utilizan archivos XML presupongan en ellos una estructura determinada, pudiendo producirse errores si se intentase emplear documentos que no la cumplan. A fin de poder expresar este tipo de limitaciones y poder verificar que un documento las cumple, se definió en el mismo estándar XML el DTD, si bien pronto se mostró bastante limitado en cuanto a su capacidad expresiva. Es por este motivo que se decidió crear el XML Schema, un lenguaje XML para definir qué estructura deben tener otros documentos XML. Contar con un esquema tiene múltiples ventajas, siendo la principal de ellas el poder validar documentos contra él para comprobar si su estructura es correcta u otras como la generación automática de código. Sin embargo, definir una estructura común a varios documentos XML de una manera óptima puede convertirse en una tarea ardua si se hace de manera manual. Este problema puede salvarse contando con una herramienta que automatice el proceso de creación de dichos XSDs. En este proyecto, desarrollaremos una herramienta en Java que, a partir de una serie de documentos XML de entrada, inferirá automáticamente un esquema contra el que validen todos ellos, expresando su estructura de manera completa y concisa. Dicha herramienta permitirá elegir varios parámetros de inferencia, a fin de que el esquema generado se adapte lo más posible a los propósitos del usuario. Esta herramienta generará también una serie de estadísticas adicionales, que permitirán conocer más información sobre los ficheros de entrada.
Resumo:
This paper presents a Focused Crawler in order to Get Semantic Web Resources (CSR). Structured data web are available in formats such as Extensible Markup Language (XML), Resource Description Framework (RDF) and Ontology Web Language (OWL) that can be used for processing. One of the main challenges for performing a manual search and download semantic web resources is that this task consumes a lot of time. Our research work propose a focused crawler which allow to download these resources automatically and store them on disk in order to have a collection that will be used for data processing. CRS consists of three layers: (a) The User Interface Layer, (b) The Focus Crawler Layer and (c) The Base Crawler Layer. CSR uses as a selection policie the Shark-Search method. CSR was conducted with two experiments. The first one starts on December 15 2012 at 7:11 am and ends on December 16 2012 at 4:01 were obtained 448,123,537 bytes of data. The CSR ends by itself after to analyze 80,4375 seeds with an unlimited depth. CSR got 16,576 semantic resources files where the 89 % was RDF, the 10 % was XML and the 1% was OWL. The second one was based on the Web Data Commons work of the Research Group Data and Web Science at the University of Mannheim and the Institute AIFB at the Karlsruhe Institute of Technology. This began at 4:46 am of June 2 2013 and 1:37 am June 9 2013. After 162.51 hours of execution the result was 285,279 semantic resources where predominated the XML resources with 99 % and OWL and RDF with 1 % each one.
Resumo:
Traditionally, geostatistical algorithms are contained within specialist GIS and spatial statistics software. Such packages are often expensive, with relatively complex user interfaces and steep learning curves, and cannot be easily integrated into more complex process chains. In contrast, Service Oriented Architectures (SOAs) promote interoperability and loose coupling within distributed systems, typically using XML (eXtensible Markup Language) and Web services. Web services provide a mechanism for a user to discover and consume a particular process, often as part of a larger process chain, with minimal knowledge of how it works. Wrapping current geostatistical algorithms with a Web service layer would thus increase their accessibility, but raises several complex issues. This paper discusses a solution to providing interoperable, automatic geostatistical processing through the use of Web services, developed in the INTAMAP project (INTeroperability and Automated MAPping). The project builds upon Open Geospatial Consortium standards for describing observations, typically used within sensor webs, and employs Geography Markup Language (GML) to describe the spatial aspect of the problem domain. Thus the interpolation service is extremely flexible, being able to support a range of observation types, and can cope with issues such as change of support and differing error characteristics of sensors (by utilising descriptions of the observation process provided by SensorML). XML is accepted as the de facto standard for describing Web services, due to its expressive capabilities which allow automatic discovery and consumption by ‘naive’ users. Any XML schema employed must therefore be capable of describing every aspect of a service and its processes. However, no schema currently exists that can define the complex uncertainties and modelling choices that are often present within geostatistical analysis. We show a solution to this problem, developing a family of XML schemata to enable the description of a full range of uncertainty types. These types will range from simple statistics, such as the kriging mean and variances, through to a range of probability distributions and non-parametric models, such as realisations from a conditional simulation. By employing these schemata within a Web Processing Service (WPS) we show a prototype moving towards a truly interoperable geostatistical software architecture.
Resumo:
This thesis provides an interoperable language for quantifying uncertainty using probability theory. A general introduction to interoperability and uncertainty is given, with particular emphasis on the geospatial domain. Existing interoperable standards used within the geospatial sciences are reviewed, including Geography Markup Language (GML), Observations and Measurements (O&M) and the Web Processing Service (WPS) specifications. The importance of uncertainty in geospatial data is identified and probability theory is examined as a mechanism for quantifying these uncertainties. The Uncertainty Markup Language (UncertML) is presented as a solution to the lack of an interoperable standard for quantifying uncertainty. UncertML is capable of describing uncertainty using statistics, probability distributions or a series of realisations. The capabilities of UncertML are demonstrated through a series of XML examples. This thesis then provides a series of example use cases where UncertML is integrated with existing standards in a variety of applications. The Sensor Observation Service - a service for querying and retrieving sensor-observed data - is extended to provide a standardised method for quantifying the inherent uncertainties in sensor observations. The INTAMAP project demonstrates how UncertML can be used to aid uncertainty propagation using a WPS by allowing UncertML as input and output data. The flexibility of UncertML is demonstrated with an extension to the GML geometry schemas to allow positional uncertainty to be quantified. Further applications and developments of UncertML are discussed.
Resumo:
Most object-based approaches to Geographical Information Systems (GIS) have concentrated on the representation of geometric properties of objects in terms of fixed geometry. In our road traffic marking application domain we have a requirement to represent the static locations of the road markings but also enforce the associated regulations, which are typically geometric in nature. For example a give way line of a pedestrian crossing in the UK must be within 1100-3000 mm of the edge of the crossing pattern. In previous studies of the application of spatial rules (often called 'business logic') in GIS emphasis has been placed on the representation of topological constraints and data integrity checks. There is very little GIS literature that describes models for geometric rules, although there are some examples in the Computer Aided Design (CAD) literature. This paper introduces some of the ideas from so called variational CAD models to the GIS application domain, and extends these using a Geography Markup Language (GML) based representation. In our application we have an additional requirement; the geometric rules are often changed and vary from country to country so should be represented in a flexible manner. In this paper we describe an elegant solution to the representation of geometric rules, such as requiring lines to be offset from other objects. The method uses a feature-property model embraced in GML 3.1 and extends the possible relationships in feature collections to permit the application of parameterized geometric constraints to sub features. We show the parametric rule model we have developed and discuss the advantage of using simple parametric expressions in the rule base. We discuss the possibilities and limitations of our approach and relate our data model to GML 3.1. © 2006 Springer-Verlag Berlin Heidelberg.
Resumo:
INTAMAP is a web processing service for the automatic interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the open geospatial consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an open source solution. The system couples the 52-North web processing service, accepting data in the form of an observations and measurements (O&M) document with a computing back-end realized in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a new markup language to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropies and extreme values. In the light of the INTAMAP experience, we discuss the lessons learnt.
Resumo:
INTAMAP is a Web Processing Service for the automatic spatial interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the Open Geospatial Consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an integrated, open source solution. The system couples an open-source Web Processing Service (developed by 52°North), accepting data in the form of standardised XML documents (conforming to the OGC Observations and Measurements standard) with a computing back-end realised in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a markup language designed to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropy, extreme values, and data with known error distributions. Besides a fully automatic mode, the system can be used with different levels of user control over the interpolation process.
Resumo:
Models are central tools for modern scientists and decision makers, and there are many existing frameworks to support their creation, execution and composition. Many frameworks are based on proprietary interfaces, and do not lend themselves to the integration of models from diverse disciplines. Web based systems, or systems based on web services, such as Taverna and Kepler, allow composition of models based on standard web service technologies. At the same time the Open Geospatial Consortium has been developing their own service stack, which includes the Web Processing Service, designed to facilitate the executing of geospatial processing - including complex environmental models. The current Open Geospatial Consortium service stack employs Extensible Markup Language as a default data exchange standard, and widely-used encodings such as JavaScript Object Notation can often only be used when incorporated with Extensible Markup Language. Similarly, no successful engagement of the Web Processing Service standard with the well-supported technologies of Simple Object Access Protocol and Web Services Description Language has been seen. In this paper we propose a pure Simple Object Access Protocol/Web Services Description Language processing service which addresses some of the issues with the Web Processing Service specication and brings us closer to achieving a degree of interoperability between geospatial models, and thus realising the vision of a useful 'model web'.
Resumo:
The Semantic Web relies on carefully structured, well defined, data to allow machines to communicate and understand one another. In many domains (e.g. geospatial) the data being described contains some uncertainty, often due to incomplete knowledge; meaningful processing of this data requires these uncertainties to be carefully analysed and integrated into the process chain. Currently, within the SemanticWeb there is no standard mechanism for interoperable description and exchange of uncertain information, which renders the automated processing of such information implausible, particularly where error must be considered and captured as it propagates through a processing sequence. In particular we adopt a Bayesian perspective and focus on the case where the inputs / outputs are naturally treated as random variables. This paper discusses a solution to the problem in the form of the Uncertainty Markup Language (UncertML). UncertML is a conceptual model, realised as an XML schema, that allows uncertainty to be quantified in a variety of ways i.e. realisations, statistics and probability distributions. UncertML is based upon a soft-typed XML schema design that provides a generic framework from which any statistic or distribution may be created. Making extensive use of Geography Markup Language (GML) dictionaries, UncertML provides a collection of definitions for common uncertainty types. Containing both written descriptions and mathematical functions, encoded as MathML, the definitions within these dictionaries provide a robust mechanism for defining any statistic or distribution and can be easily extended. Universal Resource Identifiers (URIs) are used to introduce semantics to the soft-typed elements by linking to these dictionary definitions. The INTAMAP (INTeroperability and Automated MAPping) project provides a use case for UncertML. This paper demonstrates how observation errors can be quantified using UncertML and wrapped within an Observations & Measurements (O&M) Observation. The interpolation service uses the information within these observations to influence the prediction outcome. The output uncertainties may be encoded in a variety of UncertML types, e.g. a series of marginal Gaussian distributions, a set of statistics, such as the first three marginal moments, or a set of realisations from a Monte Carlo treatment. Quantifying and propagating uncertainty in this way allows such interpolation results to be consumed by other services. This could form part of a risk management chain or a decision support system, and ultimately paves the way for complex data processing chains in the Semantic Web.