144 resultados para hypercapnia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the effects of environmental hypercarbia on ventilation in snakes, particularly the anomalous hyperpnea that is seen when CO(2) is removed from inspired gas mixtures (post-hypercapnic hyperpnea), gas mixtures of varying concentrations of CO(2) were administered to South American rattlesnakes, Crotalus durissus, breathing through an intact respiratory system or via a tracheal cannula by-passing the upper airways. Exposure to environmental hypercarbia at increasing levels, up to 7% CO(2), produced a progressive decrease in breathing frequency and increase in tidal volume. The net result was that total ventilation increased modestly, up to 5% CO(2) and then declined slightly on 7% CO(2). on return to breathing air there was an immediate but transient increase in breathing frequency and a further increase in tidal volume that produced a marked overshoot in ventilation. The magnitude of this post-hypercapnic hyperpnea was proportional to the level of previously inspired CO(2). Administration of CO(2) to the lungs alone produced effects that were identical to administration to both lungs and upper airways and this effect was removed by vagotomy. Administration of CO(2) to the upper airways alone was without effect. Systemic injection of boluses of CO(2)-rich blood produced an immediate increase in both breathing frequency and tidal volume. These data indicate that the post-hypercapnic hyperpnea resulted from the removal of inhibitory inputs from pulmonary receptors and suggest that while the ventilatory response to environmental hypercarbia in this species is a result of conflicting inputs from different receptor groups, this does not include input from upper airway receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to study the relative roles of receptors in the upper airways, lungs and systemic circulation in modulating the ventilatory response of caiman (Caiman latirostris) to inhaled CO2, gas mixtures of varying concentrations of CO2 Were administered to animals breathing through an intact respiratory system, via a tracheal cannula by-passing the upper airways (before and after vagotomy), or via a cannula delivering gas to the upper airways alone. While increasing levels of hypercarbia led to a progressive increase in tidal volume in animals with intact respiratory systems (Series 1), breathing frequency did not change until the CO2 level reached 7%, at which time it decreased. Despite this, at the higher levels of hypercarbia, the net effect was a large and progressive increase in total ventilation. There were no associated changes in heart rate or arterial blood pressure. on return to air, there was an immediate change in breathing pattern; breathing frequency increased above air-breathing values, roughly to the same maximum level regardless of the level of CO2 the animal had been previously breathing, and tidal volume returned rapidly toward resting (baseline) values. Total ventilation slowly returned to air breathing values. Administration of CO2 via different routes indicated that inhaled CO2 acted at both upper airway and pulmonary CO2-sensitive receptors to modify breathing pattern without inhibiting breathing overall. Our data suggest that in caiman, high levels of inspired CO2 promote slow, deep breathing. This will decrease deadspace ventilation and may reduce stratification in the saccular portions of the lung.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. In the present study, we assessed the role of LC noradrenergic neurons in the cardiorespiratory and thermal responses to hypercapnia. To selectively destroy LC noradrenergic neurons, we administered 6-hydroxydopamine (6-OHDA) bilaterally into the LC of male Wistar rats. Control animals had vehicle (ascorbic acid) injected (sham group) into the LC. Pulmonary ventilation (plethysmograph), mean arterial pressure (MAP), heart rate (HR), and body core temperature (T-c, data loggers) were measured followed by 60 min of hypercapnic exposure (7% CO2 in air). To verify the correct placement and effectiveness of the chemical lesions, tyrosine hydroxylase immunoreactivity was performed. Hypercapnia caused an increase in pulmonary ventilation in all groups, which resulted from increases in respiratory frequency and tidal volume (V-T) in sham-operated and 6-OHDA-lesioned groups. The hypercapnic ventilatory response was significantly decreased in 6-OHDA-lesioned rats compared with sham group. This difference was due to a decreased V-T in 6-OHDA rats. LC chemical lesion or hypercapnia did not affect MAP, HR, and T-c. Thus, we conclude that LC noradrenergic neurons modulate hypercapnic ventilatory response but play no role in cardiovascular and thermal regulation under resting conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compararam-se os efeitos da ventilação espontânea (V E) e controlada (V C) em equinos submetidos à mudança de decúbito durante anestesia. Dezesseis animais foram equitativamente divididos em dois grupos: V E e V C. Os procedimentos cirúrgicos foram iniciados com os animais em decúbito lateral esquerdo (DLE) e, após 75 minutos, os animais foram reposicionados em decúbito lateral direito (DLD). Análises hemogasométricas do sangue arterial foram realizadas após 30 e 75 minutos com os animais posicionados em cada decúbito (M1 e M2 no DLE e M3 e M4 no DLD, respectivamente). Durante a V E, observaram-se hipercapnia (PaCO2 >45mmHg), acidose respiratória (pH <7,35), redução significativa da oxigenação sanguínea após 75min da mudança de decúbito (M4: 205,8±124,7mmHg) em relação aos valores de PaO2 observados antes da mudança de posicionamento (M1: 271,8±84,8mmHg). A Vc foi associada a valores de PaCO2 e pH mais próximos da normalidade bem como resultou em valores de PaO2 significativamente maiores (52 a 96% de elevação nos valores médios) que a V E. Conclui-se que a mudança de decúbito, em equinos anestesiados com halotano e mantidos sob V E, resulta em hipercapnia, acidose respiratória e diminuição dos valores de PaO2. A instituição de V C, desde o início da anestesia, previne a acidose respiratória, além de resultar em valores de PaO2 mais próximos do ideal para animais respirando O2 a 100%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is evidence that serotonin [ 5- hydroxytryptamine ( 5- HT)] is involved in the physiological responses to hypercapnia. Serotonergic neurons represent the major cell type ( comprising 15 - 20% of the neurons) in raphe magnus nucleus ( RMg), which is a medullary raphe nucleus. In the present study, we tested the hypothesis 1) that RMg plays a role in the ventilatory and thermal responses to hypercapnia, and 2) that RMg serotonergic neurons are involved in these responses. To this end, we microinjected 1) ibotenic acid to promote nonspecific lesioning of neurons in the RMg, or 2) anti- SERT- SAP ( an immunotoxin that utilizes a monoclonal antibody to the third extracellular domain of the serotonin reuptake transporter) to specifically kill the serotonergic neurons in the RMg. Hypercapnia caused hyperventilation and hypothermia in all groups. RMg nonspecific lesions elicited a significant reduction of the ventilatory response to hypercapnia due to lower tidal volume ( V-T) and respiratory frequency. Rats submitted to specific killing of RMg serotonergic neurons showed no consistent difference in ventilation during air breathing but had a decreased ventilatory response to CO2 due to lower VT. The hypercapnia- induced hypothermia was not affected by specific or nonspecific lesions of RMg serotonergic neurons. These data suggest that RMg serotonergic neurons do not participate in the tonic maintenance of ventilation during air breathing but contribute to the ventilatory response to CO2. Ultimately, this nucleus may not be involved in the thermal responses CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In eighteen dogs, the effects of halothane (0,75% and 1,5%) associated with a normo and hypercapnia (PaCO2 from 30 to 80 mmHg) on acid-base balance were studied. Determinations of creatine clearance, urinary flow, urinary acid excretion, and urinary ammonium excretion were made. Based on the results, it is concluded that halothane associated with hypercapnia decreases the glomerular filtration rate, the urinary flow, the urinary pH and the urinary bicarbonate and sodium excretion, increases the plasmatic bicarbonate concentration, the bicarbonate reabsorbed, the urinary acid excretion and the urinary ammonium excretion, but does not alter the base excess.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review the definition of COPD is presented and the epidemiology and risk factors for disease development are briefly discussed. Characteristics clinical features, pulmonary functions indices, radiologics signs and arterial blood gases alterations are presented and discussed. Classification of disease severity and components of COPD management are also described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New Findings: • What is the central question of this study? The main purpose of the present manuscript was to investigate the cardiorespiratory responses to hypoxia or hypercapnia in conscious rats submitted to neuronal blockade of the parafacial region. We clearly showed that the integrity of parafacial region is important for the respiratory responses elicited by peripheral and central chemoreflex activation in freely behavior rats. • What is the main finding and its importance? Since the parafacial region is part of the respiratory rhythm generator, they are essential for postnatal survival, which is probably due to their contribution to chemoreception in conscious rats. The retrotrapezoid nucleus (RTN), located in the parafacial region, contains glutamatergic neurons that express the transcriptor factor Phox2b and that are suggested to be central respiratory chemoreceptors. Studies in anaesthetized animals or in vitro have suggested that RTN neurons are important in the control of breathing by influencing respiratory rate, inspiratory amplitude and active expiration. However, the contribution of these neurons to cardiorespiratory control in conscious rats is not clear. Male Holtzman rats (280-300 g, n= 6-8) with bilateral stainless-steel cannulae implanted into the RTN were used. In conscious rats, the microinjection of the ionotropic glutamatergic agonist NMDA (5 pmol in 50 nl) into the RTN increased respiratory frequency (by 42%), tidal volume (by 21%), ventilation (by 68%), peak expiratory flow (by 24%) and mean arterial pressure (MAP, increased by 16 ± 4, versus saline, 3 ± 2 mmHg). Bilateral inhibition of the RTN neurons with the GABAA agonist muscimol (100 pmol in 50 nl) reduced resting ventilation (52 ± 34, versus saline, 250 ± 56 ml min-1 kg-1 with absolute values) and attenuated the respiratory response to hypercapnia and hypoxia. Muscimol injected into the RTN slightly reduced resting MAP (decreased by 13 ± 7, versus saline, increased by 3 ± 2 mmHg), without changing the effects of hypercapnia or hypoxia on MAP and heart rate. The results suggest that RTN neurons activate facilitatory mechanisms important to the control of ventilation in resting, hypoxic or hypercapnic conditions in conscious rats. © 2012 The Authors. Experimental Physiology © 2012 The Physiological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Central chemoreceptors are important to detect changes of CO2/H+, and the Locus coeruleus (LC) is one of the many putative central chemoreceptor sites. Here, we studied the contribution of LC glutamatergic receptors on ventilatory, cardiovascular and thermal responses to hypercapnia. Methods: To this end, we determined pulmonary ventilation (VE), body temperatures (Tb), mean arterial pressure (MAP) and heart rate (HR) of male Wistar rats before and after unilateral microinjection of kynurenic acid (KY, an ionotropic glutamate receptor antagonist, 10 nmol/0.1 μL) or α-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamate receptor antagonist, 10 nmol/0.1 μL) into the LC, followed by 60 min of air breathing or hypercapnia exposure (7% CO2). Results: Ventilatory response to hypercapnia was higher in animals treated with KY intra-LC (1918.7 ± 275.4) compared with the control group (1057.8 ± 213.9, P < 0.01). However, the MCPG treatment within the LC had no effect on the hypercapnia-induced hyperpnea. The cardiovascular and thermal controls were not affected by hypercapnia or by the injection of KY and MCPG in the LC. Conclusion: These data suggest that glutamate acting on ionotropic, but not metabotropic, receptors in the LC exerts an inhibitory modulation of hypercapnia-induced hyperpnea. © 2013 Scandinavian Physiological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Doenças Tropicais - FMB