893 resultados para hydraulic conductivity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physical properties of surface soil horizons, essentially pore size, shape, continuity and affinity for water, regulate water entry into the soil. These properties are prone to changes caused by natural forces and human activity. The hydraulic properties of the surface soil greatly impact the generation of surface runoff and accompanied erosion, the major concern of agricultural water protection. The general target of this thesis was to improve our understanding of the structural and hydraulic properties of boreal clay soils. Physical properties of a clayey surface soil (0 - 10 cm, clay content 51%), with a micaceous/illitic mineralogy subjected to three different management practices of perennial vegetation, were studied. The study sites were vegetated buffer zones located side by side in SW Finland: 1) natural vegetation with no management, 2) harvested once a year, and 3) grazed by cattle. The soil structure, hydraulic properties, shrinkage properties and soil water repellency were determined at all sites. Two distinct flow domains were evident. The surface soil was characterized by subangular blocky, angular blocky and platy aggregates. Hence, large, partially accommodated, irregular elongated pores dominated the macropore domain at all sites. The intra-aggregate pore system was mostly comprised of pores smaller than 30 μm, which are responsible for water storage. Macropores at the grazed site, compacted by hoof pressure, were horizontally oriented and pore connectivity was poorest, which decreased water and air flux compared with other sites. Drying of the soil greatly altered its structure. The decrease in soil volume between wet and dry soil was 7 - 10%, most of which occurred in the moisture range of field conditions. Structural changes, including irreversible collapse of interaggregate pores, began at matric potentials around -6 kPa indicating, instability of soil structure against increasing hydraulic stress. Water saturation and several freezethaw cycles between autumn and spring likely weakened the soil structure. Soil water repellency was observed at all sites at the time of sampling and when soil was dryer than about 40 vol.%. (matric potential < -6 kPa). Therefore, water repellency contributes to water flow over a wide moisture range. Water repellency was also observed in soils with low organic carbon content (< 2%), which suggests that this phenomenon is common in agricultural soils of Finland due to their relatively high organic carbon content. Aggregate-related pedofeatures of dense infillings described as clay intrusions were found at all sites. The formation of these intrusions was attributed to clay dispersion and/or translocation during spring thaw and drying of the suspension in situ. These processes generate very new aggregates whose physical properties are most probably different from those of the bulk soil aggregates. Formation of the clay infillings suggested that prolonged wetness in autumn and spring impairs soil structure due to clay dispersion, while on the other hand it contributes to the pedogenesis of the soil. The results emphasize the dynamic nature of the physical properties of clay soils, essentially driven by their moisture state. In a dry soil, fast preferential flow is favoured by abundant macropores including shrinkage cracks and is further enhanced by water repellency. Increase in soil moisture reduces water repellency, and swelling of accommodated pores lowers the saturated hydraulic conductivity. Moisture- and temperature-related processes significantly alter soil structure over a time span of 1 yr. Thus, the pore characteristics as well as the hydraulic properties of soil are time-dependent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular diffusion plays a dominant role in transport of contaminants through fine-grained soils with low hydraulic conductivity. Attenuation processes occur while contaminants travel through the soils. Effective diffusion coefficient (De) is expected to take into consideration various attenuation processes. Effective diffusion coefficient has been considered to develop a general approach for modelling of contaminant transport in soils.The effective diffusion coefficient of sodium in presence of sulphate has been obtained using the column test.The reliability of De, has been checked by comparing theoretical breakthrough curves of sodium ion in soils obtained using advection diffusion equation with the experimental curve.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study examines the geotechnical properties of Indian bentonite clays for their suitability as buffer material in deep geological repository for high-level nuclear wastes. The bentonite samples are characterized for index properties, compaction, hydraulic conductivity and swelling characteristics. Evaluation of geotechnical properties of the compacted bentonite-sand admixtures, from parts of NW India reveals swelling potentials and hydraulic conductivities in the range of 55 % - 108 % and 1.2 X 10 –10 cm/s to 5.42x 10 –11 cm/s respectively. Strong correlation was observed between ESP (exchangeable sodium percentage) and liquid limit/swell potential of tested specimens. Relatively less well-defined trends emerged between ESP and swell pressure/hydraulic conductivity. The Barmer-1 bentonite despite possessing relatively lower montmorillonite content of 68 %, developed higher Atterberg limit and swell potential, and exhibited comparable swelling pressure and hydraulic conductivity as other bentonites with higher montmorillonite contents (82 to 86 %). The desirable geotechnical properties of Barmer clay as a buffer material is attributed to its large ESP (63 %) and, EMDD (1.17 Mg/m3) attained at the experimental compactive stress(5 MPa).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A conventional liner with a good performance against inorganic contaminants with a minimal hydraulic conductivity does not usually perform well for retention/removal of leachates containing organic contaminants. Organic modification of clay can render the naturally organophobic clay tobe organophilic. Incorporation of modified organo clay along with unmodified inorganic clay in liner systems can overcome the inherent incompatibility of conventional liners to organic contaminants and can increase organic sorption. The performance of commercially available organo clay and natural bentonite and mixtures of them in different pore fluids has been studied. It is found that the properties of mixtures improve with increase in organically modified clay particularly in non aqueous fluids from the considerations of liner application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Saltwater intrusion into coastal aquifers is a global issue, exacerbated by increasing demands for freshwater in coastal regions. This study investigates into the parametric analysis on saltwater intrusion in a conceptual, coastal, unconfined aquifer considering wide range of freshwater draft and anticipated sea level rise. The saltwater intrusion under various circumstances is simulated through parametric studies using MODFLOW, MT3DMS and SEAWAT. The MODFLOW is used to simulate the groundwater flow system under changing hydro-dynamics in coastal aquifer. To simulate solute transport MT3DMS and SEAWAT is used. The saltwater intrusion process has direct bearing on hydraulic conductivity and inversely related to porosity. It may also be noted that increase in recharge rate considered in the study does not have much influence on saltwater intrusion. Effect of freshwater draft at locations beyond half of the width of the aquifer considered has marginal effect and hence can be considered as safe zone for freshwater withdrawals. Due to the climate change effect, the anticipated rise in sea level of 0.88 m over a century is considered in the investigation. This causes increase in salinity intrusion by about 25%. The combined effect of sea level rise and freshwater draft (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Slope failure due to rainfall is a common geotechnical problem. The mechanics of rainfall induced landslides involves the interaction of a number of complex hydrologic and geotechnical factors. This study attempts to identify the influence of some of these factors on the stability of soil slope including rainfall intensity, hydraulic conductivity and the strength parameters of soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta uma revisão bibliográfica sobre os conceitos de solos não saturados e descreve os diversos tipos de camada de cobertura usadas em aterro de resíduos sólidos urbanos. Apresenta trabalhos científicos que contemplam curvas características de solos tropicais brasileiros. Caracteriza o solo usado antigamente como camada de cobertura do Aterro Morro do Céu e este solo com adição de 5% de bentonita. Determina a curva característica desses dois solos pelo Método do Papel Filtro e pela Placa de Sucção e, em seguida, Placa de Pressão. As curvas obtidas por esses métodos apresentaram diferenças. A adição da bentonita no solo teve como objetivo avaliar o desempenho do mesmo. O solo com adição de bentonita apresentou maior plasticidade, menor permeabilidade e maior capacidade de retenção de água no solo. Apresenta a modelagem de camadas monolíticas, camadas monolíticas evapotranspirativas, barreiras capilares, barreiras capilares evapotranspirativas através do uso do Programa VADOSE/W como ferramenta para aferição.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper presents hydraulic conductivity, unconfined compression strength (UCS) and triaxial test results of an 11 year old slag-cement-bentonite (CB) cut-off wall material and identifies factors affecting their long-term performance. The laboratory tests were performed on three types of CB samples ranging from contaminated block field samples to uncontaminated laboratory cast samples. The results showed that hydraulic conductivity reduces till 3 years and UCS increases till 90 days, but there after it remains constant till 11 years of age. The mean hydraulic conductivity and UCS values of block field samples are inferior and have large variability than laboratory cured samples. Such variations are mainly because of heterogeneity caused by aggressive environment and impurities within the specimen. Consolidated undrained triaxial test found that under an effective confining pressure of less than 200 kPa, tension failure occurred since the minor principal stress dropped to zero value at failure. The research outcome is useful for understanding future liability of CB wall and improving their design. © 2009 IOS Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Portland cement has been widely used for stabilisation/solidification (S/S) treatment of contaminated soils. However, there is a dearth of literature on pH-dependent leaching of contaminants from cement-treated soils. This study investigates the leachability of Cu, Pb, Ni, Zn and total petroleum hydrocarbons (TPH) from a mixed contaminated soil. A sandy soil was spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, and treated with ordinary Portland cement (CEM I). Four different binder dosages, 5%, 10%, 15% and 20% (m/m) and different water contents ranging from 13%-19% dry weight were used in order to find a safe operating envelope for the treatment process. The pH-dependent leaching behaviour of the treated soil was monitored over an 84-day period using a 3-point acid neutralisation capacity (ANC) test. The monolithic leaching test was also conducted. Geotechnical properties such as unconfined compressive strength (UCS), hydraulic conductivity and porosity were assessed over time. The treated soils recorded lower leachate concentrations of Ni and Zn compared to the untreated soil at the same pH depending on binder dosage. The binder had problems with Pb stabilisation and TPH leachability was independent of pH and binder dosage. The hydraulic conductivity of the mixes was generally of the order, 10-8 m/sec, while the porosity ranged from 26%-44%. The results of selected performance properties are compared with regulatory limits and the range of operating variables that lead to acceptable performance described. © 2012 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The movement of chemicals through soil to groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. The study of the effects of different factors involved in transport phenomena can provide valuable information to find the best remediation approaches. Numerical models are increasingly being used for predicting or analyzing solute transport processes in soils and groundwater. This article presents the development of a stochastic finite element model for the simulation of contaminant transport through soils with the main focus being on the incorporation of the effects of soil heterogeneity in the model. The governing equations of contaminant transport are presented. The mathematical framework and the numerical implementation of the model are described. The comparison of the results obtained from the developed stochastic model with those obtained from a deterministic method and some experimental results shows that the stochastic model is capable of predicting the transport of solutes in unsaturated soil with higher accuracy than deterministic one. The importance of the consideration of the effects of soil heterogeneity on contaminant fate is highlighted through a sensitivity analysis regarding the variance of saturated hydraulic conductivity as an index of soil heterogeneity. © 2011 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. This inherent buoyancy may cause lightweight structures to float when the soil liquefies. Centrifuge tests have been carried out to study the excess pore pressure generation and dissipation in liquefiable soils. In these tests, near full liquefaction conditions were attained within a few cycles of the earthquake loading. In the case of high hydraulic conductivity sands, significant dissipation could take place even during the earthquake loading which inhibits full liquefaction from occurring. In the case of excess pore pressure generation and dissipation around a floating structure, the cyclic response of the structure may lead to the reduction in excess pore pressure near the face of the structure as compared to the far field. This reduction in excess pore pressure is due to shear-induced dilation and suction pressures arising from extensile stresses at the soil-structure interface. Given the lower excess pore pressure around the structure; the soil around the structure retains a portion of this shear strength which in turn can discourage significant uplift of the underground structure. Copyright © 2012, IGI Global.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cement-bentonite (CB) cutoff walls have long been used to control ground water flow and contaminant migration at polluted sites. Hydraulic conductivity and unconfined compressive strength are two short-term properties often used by industry and owners in CB specification and are important parameters discussed in this paper. For polluted sites, long-term compatibility is also an important issue. These properties are coupled to a number of external factors including the mix design, construction sequence, presence/absence of contaminants at the site. Additional short-term properties for engineering assessment include the stressstrain characteristics in both drained and undrained shear in both with and without confinement as well as one-dimensional consolidation properties. Long term CB properties are affected by aging, reaction chemistry, drying, in situ stress state, and interaction with the polluted environment. © 2013 Taylor & Francis Group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During strong earthquakes, significant excess pore pressures can develop in saturated soils. After shaking ceases, the dissipation of these pressures can cause significant soil settlement, creating downward-acting frictional loads on piled foundations. Additionally, if the piles do not support the full axial load at the end of shaking, then the proportion of the superstructure's vertical loading carried by the piles may change as a result of the soil settlement, further altering the axial load distribution on piles as the soil consolidates. In this paper, the effect of hydraulic conductivity and initial post-shaking pile head loading is investigated in terms of the changing axial load distribution and settlement responses. The investigation is carried out by considering the results from four dynamic centrifuge experiments in which a 2 × 2 pile group was embedded in a two-layer profile and subjected to strong shaking. It is found that large contrasts in hydraulic conductivity between the two layers of the soil model affected both the pile group settlements and axial load distribution. Both these results stem from the differences in excess pore pressure dissipation, part of which took place very rapidly when the underlying soil layer had a large hydraulic conductivity.