998 resultados para hydraulic analysis
Resumo:
Natural riversare consisting of various networks as junction andstreams. And sediment and erosion are occurred by specific stream condition. When flood season,large discharge flew in the river and river bed changed by high flow velocity. Especially junction area’s flow characteristics are very complex. The purpose of this study is to analyze the flow characteristics in channel junction, which are most influenced by large discharge like flooding and input water from tributary. We investigate the flow characteristics by using hydrodynamics and transport module in MIKE 3 FM. MIKE 3 FM model was helpful tool to analysis 3D hydrodynamics, erosion and sediment effect from channel bed. We analyze flow characteristics at channel junction. Also we consider hydraulic structures like a bridge pier which is influencing flow characteristics like a flow velocity, water level, erosion and scour depth in channel bed. In the model, we controlled discharge condition according to Froude Number and reflect various grain diameter size and flow ratio change in main stream and tributary. In the result, flow velocity, water level, erosion and sediment depth are analyzed. Additionally, we suggest a these result relationship with equations. This study will help the understand flow characteristics and influence of hydraulic structure in channel junction. Acknowledgments This research was supported by a grant (12-TI-C01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Resumo:
Canada releases over 150 billion litres of untreated and undertreated wastewater into the water environment every year1. To clean up urban wastewater, new Federal Wastewater Systems Effluent Regulations (WSER) on establishing national baseline effluent quality standards that are achievable through secondary wastewater treatment were enacted on July 18, 2012. With respect to the wastewater from the combined sewer overflows (CSO), the Regulations require the municipalities to report the annual quantity and frequency of effluent discharges. The City of Toronto currently has about 300 CSO locations within an area of approximately 16,550 hectares. The total sewer length of the CSO area is about 3,450 km and the number of sewer manholes is about 51,100. A system-wide monitoring of all CSO locations has never been undertaken due to the cost and practicality. Instead, the City has relied on estimation methods and modelling approaches in the past to allow funds that would otherwise be used for monitoring to be applied to the reduction of the impacts of the CSOs. To fulfill the WSER requirements, the City is now undertaking a study in which GIS-based hydrologic and hydraulic modelling is the approach. Results show the usefulness of this for 1) determining the flows contributing to the combined sewer system in the local and trunk sewers for dry weather flow, wet weather flow, and snowmelt conditions; 2) assessing hydraulic grade line and surface water depth in all the local and trunk sewers under heavy rain events; 3) analysis of local and trunk sewer capacities for future growth; and 4) reporting of the annual quantity and frequency of CSOs as per the requirements in the new Regulations. This modelling approach has also allowed funds to be applied toward reducing and ultimately eliminating the adverse impacts of CSOs rather than expending resources on unnecessary and costly monitoring.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this article some considerations obtained during the utilization of rotor response analysis techniques in hydraulic powerplants are discussed. An applied research work was carried out in two hydraulic turbines analysing the rotor response both theoretically and experimentally. A developed mathematical model was used to simulate the rotordynamic behaviour of Francis and Kaplan turbines. The main dynamical effects that appear during the operation of the machines are discussed too. A series of measurements were carried out in the turbines using impact hammers to determine the modal behaviour of the units. The tests were carried out with the machine still and in operation. Some results and the comparison with the theory is presented in this article. The improved theoretical model was used for a sensitivity analysis of the different bearings to the main excitations that fake place during the machine operation. From this analysis, the best measuring points for condition monitoring were determined.
Resumo:
Neste estudo, padrões de tamanho do corpo de Phanocerus clavicornis Sharp, 1882 (Coleoptera: Elmidae: Larainae) foram investigados ao longo de um gradiente de variação de velocidade da corrente em córregos de baixa ordem da Mata Atlântica. Especificamente, buscou-se testar a hipótese de que a distribuição de larvas de P. clavicornis com diferentes tamanhos corpóreos respondem às variações na velocidade da corrente em córregos. As coletas das larvas foram realizadas com um amostrador de Surber durante dois períodos amostrais, definidos pelo regime de chuvas: agosto - estação seca e fevereiro - estação chuvosa. Possíveis diferenças nas medidas de tamanho do corpo foram testadas através de uma análise de variância (ANOVA). Os resultados daANOVAindicaram para todas as medidas das larvas coletadas nos córregos de primeira ordem (largura da cabeça, largura do protórax e comprimento total do corpo) encontramos diferenças significativas, indicando uma variação morfométrica com as mudanças das condições hidráulicas, onde as larvas menores foram associadas aos períodos de maior precipitação. No entanto, em córregos maiores (3a ordem), os eventos de chuva tiveram menor impacto no tamanho dos indivíduos, com a ocorrência de larvas com diferentes tamanhos. Os resultados deste estudo sugerem que os espaços intersticiais são importantes para a proteção das larvas contra a velocidade da corrente e que as populações de P. clavicornis possuem alta plasticidade, sendo uma característica fundamental para a ocupação desta espécie em ambientes instáveis. Esses resultados são importantes para a compreensão da história de vida e características comportamentais da espécie, que permitem persistir em córregos ao longo de gradiente de perturbação do fluxo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The hydrologic risk (and the hydro-geologic one, closely related to it) is, and has always been, a very relevant issue, due to the severe consequences that may be provoked by a flooding or by waters in general in terms of human and economic losses. Floods are natural phenomena, often catastrophic, and cannot be avoided, but their damages can be reduced if they are predicted sufficiently in advance. For this reason, the flood forecasting plays an essential role in the hydro-geological and hydrological risk prevention. Thanks to the development of sophisticated meteorological, hydrologic and hydraulic models, in recent decades the flood forecasting has made a significant progress, nonetheless, models are imperfect, which means that we are still left with a residual uncertainty on what will actually happen. In this thesis, this type of uncertainty is what will be discussed and analyzed. In operational problems, it is possible to affirm that the ultimate aim of forecasting systems is not to reproduce the river behavior, but this is only a means through which reducing the uncertainty associated to what will happen as a consequence of a precipitation event. In other words, the main objective is to assess whether or not preventive interventions should be adopted and which operational strategy may represent the best option. The main problem for a decision maker is to interpret model results and translate them into an effective intervention strategy. To make this possible, it is necessary to clearly define what is meant by uncertainty, since in the literature confusion is often made on this issue. Therefore, the first objective of this thesis is to clarify this concept, starting with a key question: should be the choice of the intervention strategy to adopt based on the evaluation of the model prediction based on its ability to represent the reality or on the evaluation of what actually will happen on the basis of the information given by the model forecast? Once the previous idea is made unambiguous, the other main concern of this work is to develope a tool that can provide an effective decision support, making possible doing objective and realistic risk evaluations. In particular, such tool should be able to provide an uncertainty assessment as accurate as possible. This means primarily three things: it must be able to correctly combine all the available deterministic forecasts, it must assess the probability distribution of the predicted quantity and it must quantify the flooding probability. Furthermore, given that the time to implement prevention strategies is often limited, the flooding probability will have to be linked to the time of occurrence. For this reason, it is necessary to quantify the flooding probability within a horizon time related to that required to implement the intervention strategy and it is also necessary to assess the probability of the flooding time.
Resumo:
The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.
Resumo:
Flood disasters are a major cause of fatalities and economic losses, and several studies indicate that global flood risk is currently increasing. In order to reduce and mitigate the impact of river flood disasters, the current trend is to integrate existing structural defences with non structural measures. This calls for a wider application of advanced hydraulic models for flood hazard and risk mapping, engineering design, and flood forecasting systems. Within this framework, two different hydraulic models for large scale analysis of flood events have been developed. The two models, named CA2D and IFD-GGA, adopt an integrated approach based on the diffusive shallow water equations and a simplified finite volume scheme. The models are also designed for massive code parallelization, which has a key importance in reducing run times in large scale and high-detail applications. The two models were first applied to several numerical cases, to test the reliability and accuracy of different model versions. Then, the most effective versions were applied to different real flood events and flood scenarios. The IFD-GGA model showed serious problems that prevented further applications. On the contrary, the CA2D model proved to be fast and robust, and able to reproduce 1D and 2D flow processes in terms of water depth and velocity. In most applications the accuracy of model results was good and adequate to large scale analysis. Where complex flow processes occurred local errors were observed, due to the model approximations. However, they did not compromise the correct representation of overall flow processes. In conclusion, the CA model can be a valuable tool for the simulation of a wide range of flood event types, including lowland and flash flood events.
Resumo:
L’attività di ricerca della presente tesi di dottorato ha riguardato sistemi tribologici complessi di interesse industriale per i quali sono stati individuati, mediante failure analysis, i meccanismi di usura dominanti. Per ciascuno di essi sono state studiate soluzioni migliorative sulla base di prove tribologiche di laboratorio. Nella realizzazione di maglie per macchine movimentazione terra sono ampiamente utilizzati i tradizionali acciai da bonifica. La possibilità di utilizzare i nuovi microlegati a medio tenore di carbonio, consentirebbe una notevole semplificazione del ciclo produttivo e benefici in termini di costi. Una parte della tesi ha riguardato lo studio del comportamento tribologico di tali acciai. E’ stato anche affrontato lo studio tribologico di motori idraulici, con l’obiettivo di riuscire a migliorarne la resistenza ad usura e quindi la vita utile. Sono state eseguite prove a banco, per valutare i principali meccanismi di usura, e prove di laboratorio atte a riprodurre le reali condizioni di utilizzo, valutando tecniche di modificazione superficiale che fossero in grado di ridurre l’usura dei componenti. Sono state analizzate diverse tipologie di rivestimenti Thermal Spray in termini di modalità di deposizione (AFS-APS) e di leghe metalliche depositate (Ni,Mo,Cu/Al). Si sono infine caratterizzati contatti tribologici nel settore del packaging, dove l’utilizzo di acciai inox austenitici è in alcuni casi obbligatorio. L’acciaio inossidabile AISI 316L è ampiamente utilizzato in applicazioni in cui siano richieste elevate resistenze alla corrosione, tuttavia la bassa resistenza all’usura, ne limitano l’impiego in campo tribologico. In tale ambito, è stata analizzata una problematica tribologica relativa a macchine automatiche per il dosaggio di polveri farmaceutiche. Sono state studiate soluzioni alternative che hanno previsto sia la completa sostituzione dei materiali della coppia tribologica, sia l’individuazione di tecniche di modificazione superficiale innovative quali la cementazione a bassa temperatura anche seguita dalla deposizione di un rivestimento di carbonio amorfo idrogenato a-C:H
Resumo:
The first part of this thesis has focused on the construction of a twelve-phase asynchronous machine for More Electric Aircraft (MEA) applications. In fact, the aerospace world has found in electrification the way to improve the efficiency, reliability and maintainability of an aircraft. This idea leads to the aircraft a new management and distribution of electrical services. In this way is possible to remove or to reduce the hydraulic, mechanical and pneumatic systems inside the aircraft. The second part of this dissertation is dedicated on the enhancement of the control range of matrix converters (MCs) operating with non-unity input power factor and, at the same time, on the reduction of the switching power losses. The analysis leads to the determination in closed form of a modulation strategy that features a control range, in terms of output voltage and input power factor, that is greater than that of the traditional strategies under the same operating conditions, and a reduction in the switching power losses.