824 resultados para hybrid system


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of measurements on the performance of solar cell string modules with low-concentrating CPC reflectors with a concentration factor C ˜ 4X have been carried out. To minimise the reduction in efficiency due to high cell temperatures, the modules were cooled. Four different way of cooling were tested:1) The thermal mass of the module was increased, 2) passive air cooling was used by introducing a small air gap between the module and the reflector, 3) the PV cells were cooled by a large cooling fin, 4) the module was actively cooled by circulating cold water on the back. The best performance was given with the actively cooled PV module which gave 2,2 times the output from a reference module while for the output from the module with a cooling fin the value was 1,8.Active cooling is also interesting due to the possibility of co-generation of thermal and electrical energy which is discussed in the paper. Simulations, based on climate data from Stockholm, latitude 59.4°N, show that there are good prospects for producing useful temperatures of the cooling fluid with only a slightly reduced performance of the electrical fraction of the PV thermal hybrid system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PV-Wind-Hybrid systems for stand-alone applications have the potential to be more cost efficient compared to PV-alone systems. The two energy sources can, to some extent, compensate each others minima. The combination of solar and wind should be especially favorable for locations at high latitudes such as Sweden with a very uneven distribution of solar radiation during the year. In this article PV-Wind-Hybrid systems have been studied for 11 locations in Sweden. These systems supply the household electricity for single family houses. The aim was to evaluate the system costs, the cost of energy generated by the PV-Wind-Hybrid systems, the effect of the load size and to what extent the combination of these two energy sources can reduce the costs compared to a PV-alone system. The study has been performed with the simulation tool HOMER developed by the National Renewable Energy Laboratory (NREL) for techno-economical feasibility studies of hybrid systems. The results from HOMER show that the net present costs (NPC) for a hybrid system designed for an annual load of 6000 kWh with a capacity shortage of 10% will vary between $48,000 and $87,000. Sizing the system for a load of 1800 kWh/year will give a NPC of $17,000 for the best and $33,000 for the worst location. PV-Wind-Hybrid systems are for all locations more cost effective compared to PV-alone systems. Using a Hybrid system is reducing the NPC for Borlänge by 36% and for Lund by 64%. The cost per kWh electricity varies between $1.4 for the worst location and $0.9 for the best location if a PV-Wind-Hybrid system is used.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: This prospective experimental study evaluated the surgical procedure and results of modular hybrid total hip arthroplasty in dogs.Methods: Ten skeletally mature healthy mongrel dogs with weights varying between 19 and 27 kg were used. Cemented modular femoral stems and uncemented porous-coated acetabular cups were employed. Clinical and radiographic evaluations were performed before surgery and at 30, 60, 90, 120, 180 and 360 days post-operation.Results: Excellent weight bearing was noticed in the operated limb in seven dogs. Dislocation followed by loosening of the prosthesis was noticed in two dogs, which were therefore properly treated with a femoral head osteotomy. Femoral fracture occurred in one dog, which was promptly treated with full implant removal and femoral osteosynthesis.Conclusions: The canine modular hybrid total hip arthroplasty provided excellent functionality of the operated limb.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hybrid system micro-generation integration of PV-wind power is presented by a form of energy in which problems resulting from variability in the intensity of wind and solar intensity are possible mitigation either by complementation between one source to another or the largest stability configured by the generate the system. Based on this context, this work aims to assessing the performance of a hybrid system PV-wind power energy small of a rural property for their electrification. The study has been developed at the Rural Laboratory Powering from Engineering Department of UNESP. In order to present this research, a hybrid system has been installed PV-wind power, composed of one 400Wp windmill and a 300 Wp PV-system. The results obtained allowed us to evaluate the solar and wind energy supplied ranked among 285 and 360 kWh electric power generated by the PV-wind power hybrid system stood between 25,5 and 31 kWh. At is to say achieving yield of approximately than 10% during one year observation period, i.e., it was concluded that the performance of the hybrid system depended essentially the energy received and generated by the PV-system and that there was complementation between generating wind power and PV-systems with regard to time of day and the annual seasons by confirming the technical feasibility of this kind system of micro-generation in small rural properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems.rn rnIn the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2 - 24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. rnrnNew QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye complexes can also be easily transferred into water. Our approach can apply to not only dye molecules but also other organic molecules. As an example, the QDs have been complexed with calixarene molecules and the QD-calixarene complexes also have potential for QD-based energy transfer study. rn

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In October 2002, under the auspices of Spanish Cooperation, a pilot electrification project put into operation two centralised PV-diesel hybrid systems in two different Moroccan villages. These systems currently provide a full-time energy service and supply electricity to more than a hundred of families, six community buildings, street lighting and one running water system. The appearance of the electricity service is very similar to an urban one: one phase AC supply (230V/50Hz) distributed up to each dwelling using a low-voltage mini-grid, which has been designed to be fully compatible with a future arrival of the utility grid. The management of this electricity service is based on a “fee-for-service” scheme agreed between a local NGO, partner of the project, and electricity associations created in each village, which are in charge of, among other tasks, recording the daily energy production of systems and the monthly energy consumption of each house. This register of data allows a systematic evaluation of both the system performance and the energy consumption of users. Now, after four years of operation, this paper presents the experience of this pilot electrification project and draws lessons that can be useful for designing, managing and sizing this type of small village PV-hybrid system

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El sistema de energía eólica-diesel híbrido tiene un gran potencial en la prestación de suministro de energía a comunidades remotas. En comparación con los sistemas tradicionales de diesel, las plantas de energía híbridas ofrecen grandes ventajas tales como el suministro de capacidad de energía extra para "microgrids", reducción de los contaminantes y emisiones de gases de efecto invernadero, y la cobertura del riesgo de aumento inesperado del precio del combustible. El principal objetivo de la presente tesis es proporcionar nuevos conocimientos para la evaluación y optimización de los sistemas de energía híbrido eólico-diesel considerando las incertidumbres. Dado que la energía eólica es una variable estocástica, ésta no puede ser controlada ni predecirse con exactitud. La naturaleza incierta del viento como fuente de energía produce serios problemas tanto para la operación como para la evaluación del valor del sistema de energía eólica-diesel híbrido. Por un lado, la regulación de la potencia inyectada desde las turbinas de viento es una difícil tarea cuando opera el sistema híbrido. Por otro lado, el bene.cio económico de un sistema eólico-diesel híbrido se logra directamente a través de la energía entregada a la red de alimentación de la energía eólica. Consecuentemente, la incertidumbre de los recursos eólicos incrementa la dificultad de estimar los beneficios globales en la etapa de planificación. La principal preocupación del modelo tradicional determinista es no tener en cuenta la incertidumbre futura a la hora de tomar la decisión de operación. Con lo cual, no se prevé las acciones operativas flexibles en respuesta a los escenarios futuros. El análisis del rendimiento y simulación por ordenador en el Proyecto Eólico San Cristóbal demuestra que la incertidumbre sobre la energía eólica, las estrategias de control, almacenamiento de energía, y la curva de potencia de aerogeneradores tienen un impacto significativo sobre el rendimiento del sistema. En la presente tesis, se analiza la relación entre la teoría de valoración de opciones y el proceso de toma de decisiones. La opción real se desarrolla con un modelo y se presenta a través de ejemplos prácticos para evaluar el valor de los sistemas de energía eólica-diesel híbridos. Los resultados muestran que las opciones operacionales pueden aportar un valor adicional para el sistema de energía híbrida, cuando esta flexibilidad operativa se utiliza correctamente. Este marco se puede aplicar en la optimización de la operación a corto plazo teniendo en cuenta la naturaleza dependiente de la trayectoria de la política óptima de despacho, dadas las plausibles futuras realizaciones de la producción de energía eólica. En comparación con los métodos de valoración y optimización existentes, el resultado del caso de estudio numérico muestra que la política de operación resultante del modelo de optimización propuesto presenta una notable actuación en la reducción del con- sumo total de combustible del sistema eólico-diesel. Con el .n de tomar decisiones óptimas, los operadores de plantas de energía y los gestores de éstas no deben centrarse sólo en el resultado directo de cada acción operativa, tampoco deberían tomar decisiones deterministas. La forma correcta es gestionar dinámicamente el sistema de energía teniendo en cuenta el valor futuro condicionado en cada opción frente a la incertidumbre. ABSTRACT Hybrid wind-diesel power systems have a great potential in providing energy supply to remote communities. Compared with the traditional diesel systems, hybrid power plants are providing many advantages such as providing extra energy capacity to the micro-grid, reducing pollution and greenhouse-gas emissions, and hedging the risk of unexpected fuel price increases. This dissertation aims at providing novel insights for assessing and optimizing hybrid wind-diesel power systems considering the related uncertainties. Since wind power can neither be controlled nor accurately predicted, the energy harvested from a wind turbine may be considered a stochastic variable. This uncertain nature of wind energy source results in serious problems for both the operation and value assessment of the hybrid wind-diesel power system. On the one hand, regulating the uncertain power injected from wind turbines is a difficult task when operating the hybrid system. On the other hand, the economic profit of a hybrid wind-diesel system is achieved directly through the energy delivered to the power grid from the wind energy. Therefore, the uncertainty of wind resources has increased the difficulty in estimating the total benefits in the planning stage. The main concern of the traditional deterministic model is that it does not consider the future uncertainty when making the dispatch decision. Thus, it does not provide flexible operational actions in response to the uncertain future scenarios. Performance analysis and computer simulation on the San Cristobal Wind Project demonstrate that the wind power uncertainty, control strategies, energy storage, and the wind turbine power curve have a significant impact on the performance of the system. In this dissertation, the relationship between option pricing theory and decision making process is discussed. A real option model is developed and presented through practical examples for assessing the value of hybrid wind-diesel power systems. Results show that operational options can provide additional value to the hybrid power system when this operational flexibility is correctly utilized. This framework can be applied in optimizing short term dispatch decisions considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. Comparing with the existing valuation and optimization methods, result from numerical example shows that the dispatch policy resulting from the proposed optimization model exhibits a remarkable performance in minimizing the total fuel consumption of the wind-diesel system. In order to make optimal decisions, power plant operators and managers should not just focus on the direct outcome of each operational action; neither should they make deterministic decisions. The correct way is to dynamically manage the power system by taking into consideration the conditional future value in each option in response to the uncertainty.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We used a genetic method, the yeast substrate-trapping system, to identify substrates for protein tyrosine phosphatases ζ (PTPζ/RPTPβ). This method is based on the yeast two-hybrid system, with two essential modifications: conditional expression of protein tyrosine kinase v-src (active src) to tyrosine-phosphorylate the prey proteins and screening by using a substrate-trap mutant of PTPζ (PTPζ-D1902A) as bait. By using this system, several substrate candidates for PTPζ were isolated. Among them, GIT1/Cat-1 (G protein-coupled receptor kinase-interactor 1/Cool-associated, tyrosine-phosphorylated 1) was examined further. GIT1/Cat-1 bound to PTPζ-D1902A dependent on the substrate tyrosine phosphorylation. Tyrosine-phosphorylated GIT1/Cat-1 was dephosphorylated by PTPζ in vitro. Immunoprecipitation experiments indicated that PTPζ-D1902A and GIT1/Cat-1 form a stable complex also in mammalian cells. Immunohistochemical analyses revealed that PTPζ and GIT1/Cat-1 were colocalized in the processes of pyramidal cells in the hippocampus and neocortex in rat brain. Subcellular colocalization was further verified in the growth cones of mossy fibers from pontine explants and in the ruffling membranes and processes of B103 neuroblastoma cells. Moreover, pleiotrophin, a ligand for PTPζ, increased tyrosine phosphorylation of GIT1/Cat-1 in B103 cells. All these results indicate that GIT1/Cat-1 is a substrate molecule of PTPζ.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Macromolecular interactions define many biological phenomena. Although genetic methods are available to identify novel protein-protein and DNA-protein interactions, no genetic system has thus far been described to identify molecules or mutations that dissociate known interactions. Herein, we describe genetic systems that detect such events in the yeast Saccharomyces cerevisiae. We have engineered yeast strains in which the interaction of two proteins expressed in the context of the two-hybrid system or the interaction between a DNA-binding protein and its binding site in the context of the one-hybrid system is deleterious to growth. Under these conditions, dissociation of the interaction provides a selective growth advantage, thereby facilitating detection. These methods referred to as the "reverse two-hybrid system" and "reverse one-hybrid system" facilitate the study of the structure-function relationships and regulation of protein-protein and DNA-protein interactions. They should also facilitate the selection of dissociator molecules that could be used as therapeutic agents.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis examined solar thermal collectors for use in alternative hybrid solar-biomass power plant applications in Gujarat, India. Following a preliminary review, the cost-effective selection and design of the solar thermal field were identified as critical factors underlying the success of hybrid plants. Consequently, the existing solar thermal technologies were reviewed and ranked for use in India by means of a multi-criteria decision-making method, the Analytical Hierarchy Process (AHP). Informed by the outcome of the AHP, the thesis went on to pursue the Linear Fresnel Reflector (LFR), the design of which was optimised with the help of ray-tracing. To further enhance collector performance, LFR concepts incorporating novel mirror spacing and drive mechanisms were evaluated. Subsequently, a new variant, termed the Elevation Linear Fresnel Reflector (ELFR) was designed, constructed and tested at Aston University, UK, therefore allowing theoretical models for the performance of a solar thermal field to be verified. Based on the resulting characteristics of the LFR, and data gathered for the other hybrid system components, models of hybrid LFR- and ELFR-biomass power plants were developed and analysed in TRNSYS®. The techno-economic and environmental consequences of varying the size of the solar field in relation to the total plant capacity were modelled for a series of case studies to evaluate different applications: tri-generation (electricity, ice and heat), electricity-only generation, and process heat. The case studies also encompassed varying site locations, capacities, operational conditions and financial situations. In the case of a hybrid tri-generation plant in Gujarat, it was recommended to use an LFR solar thermal field of 14,000 m2 aperture with a 3 tonne biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR increased saving of biomass (100 t/a) and land (9 ha/a). For solar thermal applications in areas with high land cost, the ELFR reduced levelised energy costs. It was determined that off-grid hybrid plants for tri-generation were the most feasible application in India. Whereas biomass-only plants were found to be more economically viable, it was concluded that hybrid systems will soon become cost competitive and can considerably improve current energy security and biomass supply chain issues in India.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT One of the current research trends in Enterprise Resource Planning (ERP) involves examining the critical factors for its successful implementation. However, such research is limited to system implementation, not focusing on the flexibility of ERP to respond to changes in business. Therefore, this study explores a combination system, made up of an ERP and informality, intended to provide organisations with efficient and flexible performance simultaneously. In addition, this research analyses the benefits and challenges of using the system. The research was based on socio-technical system (STS) theory which contains two dimensions: 1) a technical dimension which evaluates the performance of the system; and 2) a social dimension which examines the impact of the system on an organisation. A mixed method approach has been followed in this research. The qualitative part aims to understand the constraints of using a single ERP system, and to define a new system corresponding to these problems. To achieve this goal, four Chinese companies operating in different industries were studied, all of which faced challenges in using an ERP system due to complexity and uncertainty in their business environments. The quantitative part contains a discrete-event simulation study that is intended to examine the impact of operational performance when a company implements the hybrid system in a real-life situation. Moreover, this research conducts a further qualitative case study, the better to understand the influence of the system in an organisation. The empirical aspect of the study reveals that an ERP with pre-determined business activities cannot react promptly to unanticipated changes in a business. Incorporating informality into an ERP can react to different situations by using different procedures that are based on the practical knowledge of frontline employees. Furthermore, the simulation study shows that the combination system can achieve a balance between efficiency and flexibility. Unlike existing research, which emphasises a continuous improvement in the IT functions of an enterprise system, this research contributes to providing a definition of a new system in theory, which has mixed performance and contains both the formal practices embedded in an ERP and informal activities based on human knowledge. It supports both cost-efficiency in executing business transactions and flexibility in coping with business uncertainty.This research also indicates risks of using the system, such as using an ERP with limited functions; a high cost for performing informally; and a low system acceptance, owing to a shift in organisational culture. With respect to practical contribution, this research suggests that companies can choose the most suitable enterprise system approach in accordance with their operational strategies. The combination system can be implemented in a company that needs to operate a medium amount of volume and variety. By contrast, the traditional ERP system is better suited in a company that operates a high-level volume market, while an informal system is more suitable for a firm with a requirement for a high level of variety.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we propose a hybrid TCP/UDP transport, specifically for H.264/AVC encoded video, as a compromise between the delay-prone TCP and the loss-prone UDP. When implementing the hybrid approach, we argue that the playback at the receiver often need not be 100% perfect, provided that a certain level of quality is assured. Reliable TCP is used to transmit and guarantee delivery of the most important packets. This allows use of additional features in the H.264/AVC standard which simultaneously provide an enhanced playback quality, in addition to a reduction in throughput. These benefits are demonstrated through experimental results using a test-bed to emulate the hybrid proposal. We compare the proposed system with other protection methods, such as FEC, and in one case show that for the same bandwidth overhead, FEC is unable to match the performance of the hybrid system in terms of playback quality. Furthermore, we measure the delay associated with our approach, and examine its potential for use as an alternative to the conventional methods of transporting video by either TCP or UDP alone. © 2011 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.