996 resultados para human Chagas disease
Resumo:
La Enfermedad de Chagas es considerada en términos sociales y económicos, una de las enfermedades parasíticas más importantes de América Latina. La transmisión vectorial de esta enfermedad ha sido interrumpida en gran parte de América Latina sin embargo, el control vectorial no ha podido lograr la sostenibilidad y la efectividad necesarias para interrumpir la transmisión vectorial en la región del Gran Chaco de Argentina, Bolivia y Paraguay. La permanencia de poblaciones residuales de triatominos en estructuras peridomiciliarias permite una rápida recuperación del vector, sugiriéndose que estas poblaciones serían la principal fuente de reinfestación de la vivienda humana. Este escenario plantea por lo tanto la necesidad de estudiar con más profundidad las poblaciones de triatominos presentes en los peridomicilios para comprender su dispersión, capacidad de domiciliación y así entender el posible peligro que pueden presentar para el hombre como especies vectoras de la enfermedad de Chagas. Dentro de la provincia de Córdoba existen áreas que por la presencia histórica de triatomineos, la notificación reciente de casos de Chagas vectorial y el registro de especies silvestres invadiendo los domicilios merecen un estudio más profundo. Es por ello que se propone realizar un relevamiento de las especies de triatomineos que habitan los domicilios y peridomicilios en estas zonas, calcular los índices de infección con Trypanosoma cruzi que presentan, caracterizar su perfil alimentario, los factores de riesgo que favorecen su refugio, su capacidad dispersiva y diferenciar fenotípicamente entre las poblaciones peridomésticas para comprender mejor el posible peligro que pueden presentar para el hombre como especies vectoras de la enfermedad de Chagas. Además, y de manera complementaria, se aplicarán estrategias educativas en el ámbito escolar que sirvan para la vigilancia entomológica y acciones preventivas de la Enfermedad de Chagas. La determinación del perfil alimentario pautará la potencialidad de cada vector, siendo esta información fundamental para el análisis de situaciones epidemiológicas de riesgo. La capacidad dispersiva y la diferenciación fenotípica de las poblaciones permitirán conocer el posible movimiento y flujo de triatominos desde y hacia la vivienda humana. La determinación de los factores que favorecen el refugio de triatominos permitirá conocer el nivel de riesgo en que se encuentra cada domicilio. Además, considerando la importancia de las poblaciones peridomésticas en los procesos de reinfestación, se analizará la capacidad dispersiva que presentan los triatominos a través de su estado nutricional y, mediante la morfometría clásica y geométrica, se analizará como se estructura la diversidad fenotípica en los domicilios y peridomicilios. La aplicación de estrategias educativas en el ámbito escolar favorecerá el conocimiento en general de esta enfermedad, la vigilancia entomólogica y las acciones preventivas por parte de los niños en edad escolar. Chagas disease is considered socially and economically, one of the most important parasitic diseases in Latin America. Vector transmission of this disease has been interrupted in much of Latin America, however, vector control has failed to achieve sustainability and effectiveness necessary to interrupt the vector transmission in the Gran Chaco region of Argentina, Bolivia and Paraguay. The permanence of residual populations of triatomine in the peridomiciliary structures enables fast recovery of the vector, suggesting that these populations would be the main source of reinfestation of human dwellings. Within the province of Córdoba, there are areas that the historical presence of triatomines, the recent notification of cases of Chagas vector and recording of wild species invading the homes deserve further study. That is why, there will be a survey of Triatominae species that inhabit the domiciles and peridomiciles in these areas, rates of infection with Trypanosoma cruzi, their host feeding preferences, the risk factors that favor its shelter, their dispersive capacity and phenotypic differentiation between peridomestic populations, to better understand the potential danger they may present to the man and vector species of Chagas disease. In addition, complementary, educational strategies in schools were implemented that serve for entomological surveillance and preventive actions of Chagas disease. The determination of the potential food profile patterns of each vector is essential for epidemiological analysis of risk situations. Dispersive capacity and phenotypic differentiation of populations may allow understanding the movement and flow of triatomines and from human habitation.
Resumo:
In search of a suitable vector species for xenodiagnosis of humans and animals with chronic Chagas' disease we first investigated the reactions of different vector species to acute infection with Trypanosoma cruzi. Vector species utilized in this study were: Triatoma infestans, Rhodnius prolixus and Triatoma dimidiata, all well adapted to human habitats; Triatoma rubrovaria and Rhodnius neglectus both considered totally wild species; Panstrongylus megistus, Triatoma sordida, Triatoma pseudomaculata and Triatoma brasiliensis, all essentially sylvatic but some with domiciliary tendencies and others restricted to peridomestic biotopes with incipient colonization of human houses after successful eradication of T. infestans. Results summarized in Table IV suggest the following order of infectivity among the 9 studied vector species: P. megistus with 97.8% of infected bugs, T. rubrovaria with 95% of positive bugs a close second followed by T. Pseudomaculata with 94.3% and R. neglectus with 93.8% of infected bugs, almost identical thirds. R. prolixus, T. infestans and T. dimidiata exhibited low infection rates of 53.1%, 51.6% and 38.2% respectively, coupled with sharp decreases occuring with aging of infection (Fig. 1). The situation was intermediate in T. brasiliensis and T. sordida infection rates being 76.9% and 80% respectively. Results also point to the existence of a close correlation between prevalence and intensity of infection in that, species with high infection rates ranging from 93.8% to 97.8% exhibited relatively large proportions of insects (27.3% - 33.5%) harbouring very dense populations of T. cruzi. In species with low infection rates ranging from 38.2% to 53.1% the proportion of bugs demonstrating comparable parasite densities was at most 6%. No differences attributable to blood-meal size or to greater susceptibility of indigenous vector species to parasites of their own geographical area, as suggested in earlier...
Resumo:
Ultrastructural and cytochemical studies of peroxidase and acid phosphatase were performed in skin, lymph node and heart muscle tissue of thesus monkeys with experimental Chagas's disease. At the site of inoculation ther was a proliferative reaction with the presence of immature macrophages revealed by peroxidase technique. At the lymph node a difuse inflammatory exudate with mononuclear cells, fibroblasts and immature activated macrophages reproduces the human patrtern of acute Chagas' disease inflamatory lesions. The hearth muscle cells present different degrees of degenerative alterations and a striking increase in the number of lysosomal profiles that exhibit acid hydrolase reaction product. A strong inflammatory reaction was present due to lymphocytic infiltrate or due to eosinophil granulocytes associated to ruptured cells. The present study provides some experimental evidences that the monkey model could be used as a reliable model to characterize histopathological alterations of the human disease.
Resumo:
This paper describes the development of experimental Chagas' disease in 64 out-bred young dogs. Twenty-nine animals were inoculated with the Be-62 and 35 with Be-78 Trypanosoma cruzi strains. Twenty-six were infected with blood trypomastigotes by different inoculation routes and 38 with metacyclic trypomastigotes from the vector via the conjunctival route. Twenty of the 26 dogs infected with blood trypomastigotes were autopsied during the acute phase. Eleven died spontaneously and nine were sacrificed. Six remained alive until they died suddenly (two) or were autopsied (four). Twelve of the 38 dogs infected with metacyclic trypomastigotes evolved naturally to the chronic phase and remained alive for 24-48 months. The parasitemia, clinical aspects and serology (IgM and IgG) as well as electrocardiogram, hemogram and heart anatomo-histopathologic patterns of acute and chronic cardiac forms of Chagas' disease as seen in human infections, were reproduced. The most important finding is the reproductibility of diffuse fibrosing chronic chagasic cardiopathy in all dogs infected with Be-78 T. cruzi strain autopsied between the 90th and 864th days of infection. Thus, the dog can be considered as a suitable experimental model to study Chagas' disease according to the requisites of the World Health Organization (1984). Futhermore the animal is easily obtained and easy to handle and maintain in experimental laboratory conditions.
Resumo:
In order to investigate the value of the rabbit as an experimental model for Chagas' disease, seventy one animals were inoculated with different Trypanosoma cruzi strains and routes. The rabbits were submitted to necropsy in acute (earlier than three months of infection), recent chronic (three to six months) and late chronic (later than six months) phases. Myocarditis, generally focal and endomysial, occurred in 94.1%, 66.7% and 70.8% of the infected rabbits respectively in the acute, recent chronic and late chronic phases. The myocardial inflammatory exudate was composed by mononuclear cells, and also polymorphonuclear cells in the acute phase. In most cases of the late chronic phase, the myocarditis was similar to that described in the indeterminate form of human chagasic patients. Initial fibrosis occurred in the three phases but was more severe and frequent in the early chronic. Advanced fibrosis occurred only in the late chronic phase. Tissue parasites occurred only in the acute phase. The digestive tract and skeletal muscles showed mild and occasional lesions. Our data indicate that experimentally infected chagasic rabbits repeat some lesions similar to that of humans chagasic patients, specially that of the indeterminate form. So, it may be a useful, however not an ideal, model.
Resumo:
Two of the major problems facing the Amazon - human migration from the other areas and uncontrolled deforestation - constitute the greatest risk for the establishment of endemic Chagas disease in this part of Brazil. At least 18 species of triatomines had been found in the Brazilian Amazon, 10 of them infected with Trypanosoma cruzi, associated with numerous wild reservoirs. With wide-range deforestation, wild animals will perforce be driven into other areas, with tendency for triatomines to become adapted to alternative food sources in peri and intradomicilies. Serological surveys and cross-sectional studies for Chagas disease, carried out in rural areas of the Rio Negro, in the Brazilian Amazon, showed a high level of seropositivity for T. cruzi antibodies. A strong correlation of seroreactivity with the contact of gatherers of piaçava fibers with wild triatomines could be evidenced.
Resumo:
During the last twenty years, several adults of Triatoma tibiamaculata infected with Trypanosoma cruzi have been spontaneously caught by inhabitants, inside their houses in the new habitational district of Pituaçu of Salvador, Bahia. In this communication the authors call attention to the necessity of studies about the possibility of occurrence of new human cases of Chagas disease, to clarify the obscure origin of some positive blood donors in Salvador.
Resumo:
A cross section of a human population (501 individuals) selected at random, and living in a Bolivian community, highly endemic for Chagas disease, was investigated combining together clinical, parasitological and molecular approaches. Conventional serology and polymerase chain reaction (PCR) indicated an active transmission of the infection, a high seroprevalence (43.3%) ranging from around 12% in < 5 years to 94.7% in > 45 years, and a high sensitivity (83.8%) and specificity of PCR. Abnormal ECG tracing was predominant in chagasic patients and was already present among individuals younger than 13 years. SAPA (shed acute phase antigen) recombinant protein and the synthetic peptide R-13 were used as antigens in ELISA tests. The reactivity of SAPA was strongly associated to Trypanosoma cruzi infection and independent of the age of the patients but was not suitable neither for universal serodiagnosis nor for discrimination of specific phases of Chagas infection. Anti-R-13 response was observed in 27.5% only in chagasic patients. Moreover, anti-R13 reactivity was associated with early infection and not to cardiac pathology. This result questioned previous studies, which considered the anti-R-13 response as a marker of chronic Chagas heart disease. The major clonets 20 and 39 (belonging to Trypanosoma cruzi I and T. cruzi II respectively) which circulate in equal proportions in vectors of the studied area, were identified in patients' blood by PCR. Clonet 39 was selected over clonet 20 in the circulation whatever the age of the patient. The only factor related to strain detected in patients' blood, was the anti-R-13 reactivity: 37% of the patients infected by clonet 39 (94 cases) had anti-R13 antibodies contrasting with only 6% of the patients without clonet 39 (16 cases).
Resumo:
Chagas disease, named after Carlos Chagas who first described it in 1909, exists only on the American Continent. It is caused by a parasite, Trypanosoma cruzi, transmitted to humans by blood-sucking triatomine bugs and by blood transfusion. Chagas disease has two successive phases, acute and chronic. The acute phase lasts 6 to 8 weeks. After several years of starting the chronic phase, 20% to 35% of the infected individuals, depending on the geographical area will develop irreversible lesions of the autonomous nervous system in the heart, esophagus, colon and the peripheral nervous system. Data on the prevalence and distribution of Chagas disease improved in quality during the 1980's as a result of the demographically representative cross-sectional studies carried out in countries where accurate information was not available. A group of experts met in Brasília in 1979 and devised standard protocols to carry out countrywide prevalence studies on human T. cruzi infection and triatomine house infestation. Thanks to a coordinated multi-country program in the Southern Cone countries the transmission of Chagas disease by vectors and by blood transfusion has been interrupted in Uruguay in1997, in Chile in 1999, and in 8 of the 12 endemic states of Brazil in 2000 and so the incidence of new infections by T. cruzi in the whole continent has decreased by 70%. Similar control multi-country initiatives have been launched in the Andean countries and in Central America and rapid progress has been recorded to ensure the interruption of the transmission of Chagas disease by 2005 as requested by a Resolution of the World Health Assembly approved in 1998. The cost-benefit analysis of the investments of the vector control program in Brazil indicate that there are savings of US$17 in medical care and disabilities for each dollar spent on prevention, showing that the program is a health investment with good return. Since the inception in 1979 of the Steering Committee on Chagas Disease of the Special Program for Research and Training in Tropical Diseases of the World Health Organization (TDR), the objective was set to promote and finance research aimed at the development of new methods and tools to control this disease. The well known research institutions in Latin America were the key elements of a world wide network of laboratories that received - on a competitive basis - financial support for projects in line with the priorities established. It is presented the time line of the different milestones that were answering successively and logically the outstanding scientific questions identified by the Scientific Working Group in 1978 and that influenced the development and industrial production of practical solutions for diagnosis of the infection and disease control.
Resumo:
We have been searching for evidence of Chagas disease in mummified human remains. Specifically, we have looked for evidence of alteration of intestinal or fecal morphology consistent with megacolon, a condition associated with Chagas disease. One prehistoric individual recovered from the Chihuahuan Desert near the Rio Grande exhibits such pathology. We present documentation of this case. We are certain that this individual presents a profoundly altered large intestinal tract and we suggest that further research should focus on confirmation of a diagnosis of Chagas disease. We propose that the prehistoric activity and dietary patterns in Chihuahua Desert hunter/gatherers promoted the pathoecology of Chagas disease.
Resumo:
Literature from 1928 through 2004 was compiled from different document sources published in Mexico or elsewhere. From these 907 publications, we found 19 different topics of Chagas disease study in Mexico. The publications were arranged by decade and also by state. This information was used to construct maps describing the distribution of Chagas disease according to different criteria: the disease, vectors, reservoirs, and strains. One of the major problems confronting study of this zoonotic disease is the great biodiversity of the vector species; there are 30 different species, with at least 10 playing a major role in human infection. The high variability of climates and biogeographic regions further complicate study and understanding of the dynamics of this disease in each region of the country. We used a desktop Genetic Algorithm for Rule-Set Prediction procedure to provide ecological models of organism niches, offering improved flexibility for choosing predictive environmental and ecological data. This approach may help to identify regions at risk of disease, plan vector-control programs, and explore parasitic reservoir association. With this collected information, we have constructed a data base: CHAGMEX, available online in html format.
Resumo:
Chagas disease in Central America is known since 1913 when the first human case was reported in El Salvador. The other Central American countries reported their first cases between 1933 and 1967. On October 1997 was launched the Central American Initiative for Chagas Disease Control (IPCA). The objectives of this sub-regional Initiative are: (1) the elimination of Rhodnius prolixus in Central America; (2) the reduction of the domiciliary infestation of Triatoma dimidiata; and (3) the elimination of the transfusion transmission of Trypanosoma cruzi. Significant advancements being close to the elimination of R. prolixus in Central America and the control of the transfusion transmission has been a transcendent achievement for the sub-region. The main challenges that the IPCA will have in the close future are: developing effective strategies for control and surveillance of T. dimidiata; and surveillance of other emerging triatominae species like R. pallescens, T. nitida, and T. ryckmani.
Resumo:
Human infection with the protozoa Trypanosoma cruzi extends through North, Central, and South America, affecting 21 countries. Most human infections in the Western Hemisphere occur through contact with infected bloodsucking insects of the triatomine species. As T. cruzi can be detected in the blood of untreated infected individuals, decades after infection took place; the infection can be also transmitted through blood transfusion and organ transplant, which is considered the second most common mode of transmission for T. cruzi. The third mode of transmission is congenital infection. Economic hardship, political problems, or both, have spurred migration from Chagas endemic countries to developed countries. The main destination of this immigration is Australia, Canada, Spain, and the United States. In fact, human infection through blood or organ transplantation, as well as confirmed or potential cases of congenital infections has been described in Spain and in the United States. Estimates reported here indicates that in Australia in 2005-2006, 1067 of the 65,255 Latin American immigrants (16 per 1000) may be infected with T. cruzi, and in Canada, in 2001, 1218 of the 131,135 immigrants (9 per 1000) whose country of origin was identified may have been also infected. In Spain, a magnet for Latin American immigrants since the 2000, 5125 of 241,866 legal immigrants in 2003 (25 per 1000), could be infected. In the United States, 56,028 to 357,205 of the 7,20 million, legal immigrants (8 to 50 per 1000), depending on the scenario, from the period 1981-2005 may be infected with T. cruzi. On the other hand, 33,193 to 336,097 of the estimated 5,6 million undocumented immigrants in 2000 (6 to 59 per 1000) could be infected. Non endemic countries receiving immigrants from the endemic ones should develop policies to protect organ recipients from T. cruzi infection, prevent tainting the blood supply with T. cruzi, and implement secondary prevention of congenital Chagas disease.
Resumo:
One hundred years since the discovery of Chagas disease associated with Trypanosoma cruzi infection, growing attention has focused on understanding the evolution in parasite-human host interaction. This interest has featured studies and results from paleoparasitology, not only the description of lesions in mummified bodies, but also the recovery of genetic material from the parasite and the possibility of analyzing such material over time. The present study reviews the evidence of Chagas disease in organic remains excavated from archeological sites and discusses two findings in greater detail, both with lesions suggestive of chagasic megacolon and confirmed by molecular biology techniques. One of these sites is located in the United States, on the border between Texas and Mexico and the other in state of Minas Gerais, in the Brazilian cerrado (savannah). Dated prior to contact with Europeans, these results confirm that Chagas disease affected prehistoric human groups in other regions outside the Andean altiplanos and other transmission areas on the Pacific Coast, previously considered the origin of T. cruzi infection in the human host.
Resumo:
Chagas disease, named after Carlos Chagas, who first described it in 1909, exists only on the American Continent. It is caused by a parasite, Trypanosoma cruzi, which is transmitted to humans by blood-sucking triatomine bugs and via blood transfusion. Chagas disease has two successive phases: acute and chronic. The acute phase lasts six-eight weeks. Several years after entering the chronic phase, 20-35% of infected individuals, depending on the geographical area, will develop irreversible lesions of the autonomous nervous system in the heart, oesophagus and colon, and of the peripheral nervous system. Data on the prevalence and distribution of Chagas disease improved in quality during the 1980s as a result of the demographically representative cross-sectional studies in countries where accurate information was not previously available. A group of experts met in Brasilia in 1979 and devised standard protocols to carry out countrywide prevalence studies on human T. cruzi infection and triatomine house infestation. Thanks to a coordinated multi-country programme in the Southern Cone countries, the transmission of Chagas disease by vectors and via blood transfusion was interrupted in Uruguay in 1997, in Chile in 1999 and in Brazil in 2006; thus, the incidence of new infections by T. cruzi across the South American continent has decreased by 70%. Similar multi-country initiatives have been launched in the Andean countries and in Central America and rapid progress has been reported towards the goal of interrupting the transmission of Chagas disease, as requested by a 1998 Resolution of the World Health Assembly. The cost-benefit analysis of investment in the vector control programme in Brazil indicates that there are savings of US$17 in medical care and disabilities for each dollar spent on prevention, showing that the programme is a health investment with very high return. Many well-known research institutions in Latin America were key elements of a worldwide network of laboratories that carried out basic and applied research supporting the planning and evaluation of national Chagas disease control programmes. The present article reviews the current epidemiological trends for Chagas disease in Latin America and the future challenges in terms of epidemiology, surveillance and health policy.