428 resultados para highlands
Resumo:
Excessive runoff and soil erosion in the upper Blue Nile Basin poses a threat that has attracted the attention of the Ethiopian government because of the serious on-site effects in addition to downstream effects, such as the siltation of water harvesting structures and reservoirs. The objective of the study was to evaluate and recommend effective biophysical soil and water conservation measure(s) in the Debre Mewi watershed, about 30 km south of the Lake Tana. Six conservation measures were evaluated for their effects on runoff, soil loss, and forage yield using runoff plots. There was a significant difference between treatments for both runoff and soil loss. The four-year average annual soil loss in the different plots ranged from 26 to 71 t ha−1, and total runoff ranged from 180 to 302 mm, while annual rainfall varied between 854 mm in 2008 and 1247 mm in 2011. Soil bund combined with elephant grass had the lowest runoff and soil loss as compared to the other treatments, whereas the untreated control plot had the highest for both parameters. As an additional benefit, 2.8 and 0.7 t ha−1 year−1 of dried forage was obtained from elephant and local grasses, respectively. Furthermore, it was found that soil bund combined with Tephrosia increased soil organic matter by 13% compared to the control plot. Soil bund efficiency was significantly enhanced by combining them with biological measures and improved farmers’ perception of soil and water conservation measures.
Resumo:
The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.
Resumo:
Soil degradation is widespread in the Ethiopian Highlands. Its negative impacts on soil productivity contribute to the extreme poverty of the rural population. Soil conservation is propagated as a means of reducing soil erosion, however, it is a costly investment for small-scale farming households. The present study is an attempt to show whether or not selected mechanical Soil and Water Conservation (SWC) technologies are profitable from a farmer’s point of view. A financial Cost-Benefit Analysis (CBA) is carried out to assess whether or not the considered SWC technologies are profitable from a farmer’s point of view. The CBA is supplemented by an evaluation of aspects from the economic and institutional environment. Whether or not soil conservation is profitable from a farmer’s point of view depends on a broad range of factors from the ecological, economic, political, institutional and socio-cultural sphere and also depends on the technology and the prevailing farming system. Because these factors are closely interlinked, it is often not sufficient to change or influence one to make SWC profitable. Several recommendations are formulated with regard to improving the profitability of SWC investments from a farmer’s point of view. Because the reasons for unsustainable resource use are manifold and highly interlinked, only a multi-stakeholder, multi-level and multi-objective approach is likely to offer solutions that address the underlying problems adequately.
Resumo:
A study was conducted on the highlands of Ethiopia to identify and analyse the factors determining the adoption of environmental management measures. In 1985, Ethiopia was classified into low –and high-potential areas based on the suitability of the natural environment for rain-fed agriculture. To address these objectives, case study areas were selected from low-potential and high-potential areas randomly. Data were collected through face-to-face interview and key informants, focus group discussion and field observation. In the low-potential areas, the physical environment ‒ particularly soil and forest environments have shown substantial recovery. Similarly, the water environment has improved. However, in the high-potential areas sampled, these resources are still being degraded. Clear understanding of the benefits of soil conservation structures by farmers, active involvement and technical support from the government and full and genuine participation of farmers in communal environmental resources management activities were found to be main factors in the adoption of environmental management measures.
Resumo:
Accurate rainfall data are the key input parameter for modelling river discharge and soil loss. Remote areas of Ethiopia often lack adequate precipitation data and where these data are available, there might be substantial temporal or spatial gaps. To counter this challenge, the Climate Forecast System Reanalysis (CFSR) of the National Centers for Environmental Prediction (NCEP) readily provides weather data for any geographic location on earth between 1979 and 2014. This study assesses the applicability of CFSR weather data to three watersheds in the Blue Nile Basin in Ethiopia. To this end, the Soil and Water Assessment Tool (SWAT) was set up to simulate discharge and soil loss, using CFSR and conventional weather data, in three small-scale watersheds ranging from 112 to 477 ha. Calibrated simulation results were compared to observed river discharge and observed soil loss over a period of 32 years. The conventional weather data resulted in very good discharge outputs for all three watersheds, while the CFSR weather data resulted in unsatisfactory discharge outputs for all of the three gauging stations. Soil loss simulation with conventional weather inputs yielded satisfactory outputs for two of three watersheds, while the CFSR weather input resulted in three unsatisfactory results. Overall, the simulations with the conventional data resulted in far better results for discharge and soil loss than simulations with CFSR data. The simulations with CFSR data were unable to adequately represent the specific regional climate for the three watersheds, performing even worse in climatic areas with two rainy seasons. Hence, CFSR data should not be used lightly in remote areas with no conventional weather data where no prior analysis is possible.
Resumo:
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies - including metabasites - lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet-olivine assemblages (i.e. >=18-20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P-T path and peak conditions of 800-850 °C and 23-25 kbar. These conditions correspond to ~70 km depth of burial and a metamorphic gradient of 11-12 °C/km that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet-whole-rock Sm-Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.
Resumo:
Se presentan los resultados de la investigación pedoantracológica en una catena del macizo dcentral de Gredos
Resumo:
Análisis de las políticas aplicadas por el Estado chileno y sus efectos en el uso del territorio por parte de las comunidades indígenas de la zona del Alto Bíobio. Se observa que históricamente las comunidades han ido perdiendo el control de sus tierras
Resumo:
En las últimas décadas, la agricultura sostenible ha sido objeto de gran interés y debate académico, no sólo en términos conceptuales, sino también en términos metodológicos. La persistencia de la inseguridad alimentaria y el deterioro de los recursos naturales en muchas regiones del mundo, ha provocado el surgimiento de numerosas iniciativas centradas en revitalizar la agricultura campesina así como renovadas discusiones sobre el rol que juega la agricultura como motor de desarrollo y principal actividad para alivio de la pobreza. Por ello, cuando hablamos de evaluar sistemas campesinos de montaña, debemos considerar tanto la dimensión alimentaria como las especificidades propias de los sistemas montañosos como base fundamental de la sostenibilidad. Al evaluar la contribución que han hecho alternativas tecnológicas y de manejo en la mejora de la sostenibilidad y la seguridad alimentaria de los sistemas campesinos de montaña en Mesoamérica, surgen tres preguntas de investigación: • ¿Se está evaluando la sostenibilidad de los sistemas campesinos teniendo en cuenta la variabilidad climática, la participación de los agricultores y las dinámicas temporales? • ¿Podemos rescatar tendencias comunes en estos sistemas y extrapolar los resultados a otras zonas? • ¿Son inequívocamente positivas las alternativas propuestas que se han llevado a cabo? En este trabajo se presentan tres evaluaciones de sostenibilidad que tratan de poner de manifiesto cuáles son los retos y oportunidades que enfrentan actualmente los sistemas campesinos de montaña. En primer lugar, se evalúan tres sistemas de manejo agrícola bajo dos años meteorológicamente contrastantes. Se determinó que durante el año que experimentó lluvias abundantes y temperaturas moderadas, los sistemas de bajos insumos, basados en el uso de abonos orgánicos y rotación de cultivos, obtuvieron los mejores resultados en indicadores ecológicos y similares resultados en los económicos y sociales que el sistema de altos insumos químicos. En el segundo año, con heladas tempranas y sequía invernal, la productividad se redujo para todos los sistemas pero los sistemas más diversificados (en variedades de maíz y/o siembra de otros cultivos) pudieron resistir mejor los contratiempos climáticos. En segundo lugar, se evalúa el grado de conocimiento (percepción) campesino para determinar los factores claves que determinan la sostenibilidad de sus sistemas y su seguridad alimentaria. Se determinó que los principales puntos críticos identificados por los campesinos (tamaño de parcela y pendiente del terreno) afectan de forma significativa a cuestiones de índole económica, pero no son capaces de explicar los desequilibrios alimenticios existentes. Realizando un análisis comparativo entre comunidades que presentaban buenos y malos resultados en cuanto a aporte energético y proteico, se determinó que la seguridad alimentaria estaba relacionada con la sostenibilidad de los sistemas y que concretamente estaba ligada a los atributos de equidad y autonomía. Otro resultado destacable fue que las comunidades más marginales y con mayor dificultad de acceso mostraron mayores niveles de inseguridad alimentaria, pero la variabilidad intergrupal fue muy alta. Eso demuestra que la seguridad alimentaria y nutricional forma parte de un complejo sistema de estrategias de autoabastecimiento ligada a la idiosincrasia misma de cada uno de los hogares. En tercer lugar, se evaluó el desempeño de las escuelas de campo de agricultores (ECAs) en la mejora de la sostenibilidad y la seguridad alimentaria de un sistema campesino de montaña. Para ver el efecto del impacto de estas metodologías a largo plazo, se estudiaron tres comunidades donde se habían implementado ECAs hace 8, 5 y 3 años. Encontramos que el impacto fue progresivo ya que fue la comunidad más antigua la que mejores valores obtuvo. El impacto de las ECAs fue rápido y persistente en los indicadores relacionados con la participación, el acceso a servicios básicos y la conservación de los recursos naturales. El estudio demostró un claro potencial de las ECAs en la mejora general de la sostenibilidad y la seguridad alimentaria de estos sistemas, sin embargo se observó una relación directa entre el aumento de producción agrícola y el uso de insumos externos, lo que puede suponer un punto crítico para los ideales sostenibles. ABSTRACT During the last decades, sustainable agriculture has been the subject of considerable academic interest and debate, not only in conceptual terms, but also in methodological ones. The persistence of high levels of environmental degradation and food insecurity in many regions has led to new initiatives focused on revitalizing peasant agriculture and renewed discussions of the role of sustainable agriculture as an engine for development, environmental conservation and poverty alleviation. Therefore, to assess mountain farming systems, we must consider food dimension and taking into account the specificities of the mountain systems as the foundation of sustainability. When evaluating contribution of technological and management alternative proposals in achieving sustainability and food security for peasant farming systems in Mesoamerican highlands, three research questions arise: • Is sustainability of peasant-farming systems being evaluated taking into account climate variability, participation of farmers and temporal dynamics? • Can we rescue common trends in these systems and extrapolate the results to other areas? • What alternative proposals that have been conducted are unequivocally positives? In this document, we present three evaluations of sustainability that try to highlight the challenges and opportunities that currently face mountain farming systems in Mesoamerica. First, we evaluate the sustainability of three agricultural management systems in two contrasting weather years. We determined that during the first year that exposed heavy rains and moderate temperatures, low-input systems, which are based on the use of organic fertilizers and crop rotation, provided better results in terms of ecological indicators and equal results in terms of economic and social indicators than those achieved using a high chemical input system. In the second year, which featured early frosts and a winter drought, productivity declined in all systems; however, the most diversified systems (in terms of the maize varieties grown and the sowing of other crops) more successfully resisted these climatic adversities. Second, we evaluate the farmers’ perception to determine the key drivers for achieving their sustainability and food and nutritional security. We determined that the key factors identified by farmers (landholding size and slope of cropland) exerted significant impacts on economic disparities but did not explain the malnutrition levels. We compared two contrasting hamlets according to their energy and protein supply, one namely Limón Timoté (LT), which did not present food problems and Limón Peña Blanca (LP), which did exhibit food insecurity. The results showed that FNS is linked to sustainability, and it is primarily related to the sustainability attributes of self-reliance and equity. Although the more marginated and inaccessible community exhibited more food insecurity, food and nutritional security depend upon a complex array of self-sufficiency strategies that remain linked to individual household idiosyncrasies. Third, we evaluated the impact of farmer field schools for improving the sustainability and food security of peasant mountain systems. In order to appreciate the long-term impact, we studied three communities where FFSs were implemented eight, five and three years ago, respectively. We found that FFSs have a gradual impact, as the community that first implemented FFSs scores highest. The impact of FFSs was broad and long-lasting for indicators related to participation, access to basic services and conservation of natural resources. This study demonstrates the potential of FFSs, but more attention will have to be paid to critical indicators in order to scale up their potential in the future. We observed a direct relationship between the increase in agricultural production and the use of external inputs, which is a critical point for sustainable ideals.