933 resultados para high repetition rate


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-linearities in semiconductor optical amplifiers have been used to demonstrate a wide range of functions applicable to future optical networks such as wavelength conversion and optical switching. Four-wave-mixing effects in SOAs have been studied extensively in many laboratories with respect to the underlying physical processes and system applications. At BT Labs an optimization of SOAs for FWM has been achieved by altering the device active layer composition and by increasing the device length. We will review recent progress at BT Labs in dispersion compensation, wavelength conversion and demultiplexing at bit-rates of 40 Gbit/s using these devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-linearities in semiconductor optical amplifiers have been used to demonstrate a wide range of functions applicable to future optical networks such as wavelength conversion and optical switching. Four-wave-mixing effects in SOAs have been studied extensively in many laboratories with respect to the underlying physical processes and system applications. At BT Labs an optimisation of SOAs for FWM has been achieved by altering the device active layer composition and by increasing the device length. We will review recent progress at BT Labs in dispersion compensation, wavelength conversion and demultiplexing at bit-rates of 40Gbit/s using these devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation of the mode-locking performance of a two-section external-cavity mode-locked InGaAs quantum-dot laser diode, focusing on repetition rate, pulse duration and pulse energy. The lowest repetition rate to-date of any passively mode-locked semiconductor laser diode is demonstrated (310 MHz) and a restriction on the pulse energy (at 0.4 pJ) for the shortest pulse durations is identified. Fundamental mode-locking from 310 MHz to 1.1 GHz was investigated, and harmonic mode-locking was achieved up to a repetition rate of 4.4 GHz. Fourier transform limited subpicosecond pulse generation was realized through implementation of an intra-cavity glass etalon, and pulse durations from 930fs to 8.3ps were demonstrated for a repetition rate of 1 GHz. For all investigations, mode-locking with the shortest pulse durations yielded constant pulse energies of ∼0.4 pJ, revealing an independence of the pulse energy on all the mode-locking parameters investigated (cavity configuration, driving conditions, pulse duration, repetition rate, and output power). © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.