915 resultados para high calcium adaptation
Resumo:
Mutants of each of the four divalent cation binding sites of chicken skeletal muscle troponin C (TnC) were constructed using site directed mutagenesis to convert Asp to Ala at the first coordinating position in each site. With a view to evaluating the importance of site-site interactions both within and between the N- and C-terminal domains, in this study the mutants are examined for their ability to associate with other components of the troponin-tropomyosin regulatory complex and to regulate thin filaments. The functional effects of each mutation in reconstitution assays are largely confined to the domain in which it occurs, where the unmutated site is unable to compensate for the defect, Thus the mutants of sites I and II bind to the regulatory complex but are impaired in ability to regulate tension and actomyosin ATPase activity, whereas the mutants of sites III and IV regulate activity but are unable to remain bound to thin filaments unless Ca2+ is present. When all four sites are intact, free Mg2+ causes a 50-60-fold increase in TnC's affinity for the other components of the regulatory complex, allowing it to attach firmly to thin filaments. Calcium can replace Mg2+ at a concentration ratio of 1:5000, and at this ratio the Ca2 . TnC complex is more tightly bound to the filaments than the Mg2 . TnC form, In the C-terminal mutants, higher concentrations of Ca2+ (above tension threshold) are required to effect this transformation than in the recombinant wild-type protein, suggesting that the mutants reveal an attachment mediated by Ca2+ in the N-domain sites.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The subdivisions of the medial geniculate complex can be distinguished based on the immunostaining of calcium-binding proteins and by the properties of the neurons within each subdivision. The possibility of changes in neurochemistry in this and other central auditory areas are important aspects to understand the basis that contributing to functional variations determined by environmental cycles or the animal's cycles of activity and rest. This study investigated, for the first time, day/night differences in the amounts of parvalbumin-, calretinin- and calbindin-containing neurons in the thalamic auditory center of a non-human primate, Sapajus apella. The immunoreactivity of the PV-IR, CB-IR and CR-IR neurons demonstrated different distribution patterns among the subdivisions of the medial geniculate. Moreover, a high number of CB- and CR-IR neurons were found during day, whereas PV-IR was predominant at night. We conclude that in addition to the chemical heterogeneity of the medial geniculate nucleus with respect to the expression of calcium-binding proteins, expression also varied relative to periods of light and darkness, which may be important for a possible functional adaptation of central auditory areas to environmental changes and thus ensure the survival and development of several related functions.
Resumo:
Little information is available related to adolescent calcium intake and relationships with injuries they might suffer from sport participation. To determine calcium intake of high school athletes, to assess their self reported injury rates, and to examine the relationship between the two over a 12 month period of time. Participants received a questionnaire at their school and completed it anywhere they found convenient. Adolescent athletes in the Lincoln Public School system (n=43) that participated in at least one sport in the past year. Four age groups participated in the study with sixteen year olds having a significantly higher calcium intake at 1297 mg that of fourteen year olds. A variety of sports were represented with largest number of respondents participating in baseball/or softball at (55%). The next most played sport was basketball at (18%). Median total diet calcium was 1144.5 mg with a mean of 1182 mg + 567 mg. For the frequency of injuries that caused a missed practice or game in the past year, ankle injuries were the most common (25%). Knee injuries were the second most common (17%), followed closely by hand injuries (8%). Mean total diet calcium of athletes with five or more injuries that caused a missed practice or game was significantly higher at 1966 mg (P<.05) than athletes mean diet calcium with zero, one, two, and three injuries. Total milk calcium of those who reported three injuries that resulted in broken or fractured bones or dislocated joints was significantly higher (P<.05) at 1286 mg of total milk calcium than those who reported having zero, one, or two breaks or fractures. Athletes with higher calcium intakes have a higher number of reported injuries. This may be the result of increased vigorous activity which leads to increased calorie and calcium consumption. More importantly, this increased activity leads to an increased chance of injury. The greater calcium intake correlated with greater number of injuries may also be because of third parties advising the athletes who get injured to drink more milk and get more calcium in their diets because they have been injuries already.
Resumo:
OBJECTIVE: The Prodromal Questionnaire (PQ) is a 92-item self-report screening tool for individuals at ultra-high risk (UHR) to develop psychosis. This study aims to present the translation to Portuguese and preliminary results in UHR and first episode (FE) psychosis in a Portuguese sample. METHODS: The PQ was translated from English to Portuguese by two bilingual researchers from the research program on early psychosis of the Instituto de Psiquiatria HCFMUSP, São Paulo, Brazil (ASAS - "Evaluation and Follow up of Adolescents and Young Adults in São Paulo") and back translated by two other researchers. The study participants (n = 11-) were evaluated through the Portuguese version of the Prodromal Questionnaire (PQ) and SIPS. RESULTS: The individuals at UHR (n = 7) presented a lower score than first episode patients (n = 4). The UHR mean scores and standard deviation on Portuguese version of the PQ were: 13.0 ± 10.0 points on positive symptoms subscale, and FE patients: 33.0 ± 10.0. CONCLUSION: The UHR and FE patients' of this study presented PQ scores similar to the ones found in the literature; what suggests that it is possible to use the PQ in Brazilian help-seeking individuals as a screening tool.
Resumo:
The accurate reconstruction of sea surface temperature (SST) history in climate-sensitive regions (e.g. tropical and polar oceans) became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin.) highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca) of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin.) is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02)‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5)°C associated with salinities below 33.0 (±0.5)‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin.), becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.
Resumo:
The soils on four lithologies (basaltic conglomerates, Bohio; Andesite; volcanoclastic sediments with basaltic agglomerates, Caimito volcanic; foraminiferal limestone, Caimito marine) on Barro Colorado Island (BCI) have high exchangeable Ca concentrations and cation-exchange capacities (CEC) compared to other tropical soils on similar parent material. In the 0–10 cm layer of 24 mineral soils, pH values ranged from 5.7 (Caimito volcanic and Andesite) to 6.5 (Caimito marine), concentrations of exchangeable Ca from 134 mmolc kg− 1 (Caimito volcanic) to 585 mmolc kg− 1 (Caimito marine), and cation exchange capacities from 317 mmolc kg− 1 (Caimito volcanic) to 933 mmolc kg− 1 (Caimito marine). X-ray diffractometry of the fraction < 2 μm revealed that smectites dominated the clay mineral assemblage in soil except on Caimito volcanic, where kaolinite was the dominant clay mineral. Exchangeable Ca concentrations decreased with increasing soil depth except on Caimito marine. The weathering indices Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA) and Weathering Index of Parker (WIP) determined for five soils on all geological formations, suggested that in contrast to expectation the topsoil (0–10 cm) appeared to be the least and the subsoil (50–70 cm) and saprolite (isomorphically weathered rock in the soil matrix) the most weathered. Additionally, the weathering indices indicated depletion of base cations and enrichment of Al-(hydr)oxides throughout the soil profile. Tree species did not have an effect on soil properties. Impeded leaching and the related occurrence of overland flow seem to be important in determining clay mineralogy. Our results suggest that (i) edaphic conditions favor the formation of smectites on most lithologies resulting in high CEC and thus high retention capacity for Ca and (ii) that there is an external source such as dust or sea spray deposition supplying Ca to the soils.
Resumo:
High voltage-activated (HVA) calcium channels from rat brain and rabbit heart are expressed in Xenopus laevis oocytes and their modulation by protein kinases studied. A subtype of the HVA calcium current expressed by rat brain RNA is potentiated by the phospholipid- and calcium-dependent protein kinase (PKC). The calcium channel clone $\alpha\sb{\rm1C}$ from rabbit heart is modulated by the cAMP-dependent protein kinase (PKA), and another factor present in the cytoplasm.^ The HVA calcium channels from rat brain do not belong to the L-type subclass since they are insensensitive to dihydropyridine (DHP) agonists and antagonists. The expressed currents do contain a N-type fraction which is identified by inactivation at depolarized potentials, and a P-type fraction as defined by blockade by the venom of the funnel web spider Agelenopsis Aperta. A non N-type fraction of this current is potentiated, by using phorbol esters to activate PKC. This residual fraction of current resembles the newly described Q-type channel from cerebellar granule cells in its biophysical properties, and potentiation by activation of PKC.^ The $\alpha\sb{\rm1C}$ clone from rabbit heart is expressed in oocytes and single-channel currents are measured using the cell-attached and cell-excised patch clamp technique. The single-channel current runs down within two minutes after patch excision into normal saline bath solution. The catalytic subunit of PKA + MgATP is capable of reversing this rundown for over 15 minutes. There also appears to be an additional factor present in the cytoplasm necessary for channel activity as revealed in experiments where PKA failed to prevent rundown.^ These data are important in that these types of channels are involved in synaptic transmission at many different types of synapses. The mammalian synapse is not accessible for these types of studies, however, the oocyte expression system allows access to HVA calcium channels for the study of their modulation by phosphorylation. ^
Resumo:
In this paper three p-adaptation strategies based on the minimization of the truncation error are presented for high order discontinuous Galerkin methods. The truncation error is approximated by means of a ? -estimation procedure and enables the identification of mesh regions that require adaptation. Three adaptation strategies are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. All strategies require fine solutions, which are obtained by enriching the polynomial order, but while the former needs time converged solutions, the last two rely on non-converged solutions, which lead to faster computations. In addition, the high order method permits the spatial decoupling for the estimated errors and enables anisotropic p-adaptation. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier?Stokes equations. It is shown that the two quasi- a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively.
Resumo:
Light triggers the phototransduction cascade by activating the visual pigment rhodopsin (Rho → Rho*). Phosphorylation of Rho* by rhodopsin kinase (RK) is necessary for the fast recovery of sensitivity after intense illumination. Ca2+ ions, acting through Ca2+-binding proteins, have been implicated in the desensitization of phototransduction. One such protein, recoverin, has been proposed to regulate RK activity contributing to adaptation to background illumination in retinal photoreceptor cells. In this report, we describe an in vitro assay system using isolated retinas that is well suited for a variety of biochemical assays, including assessing Ca2+ effects on Rho* phosphorylation. Pieces of bovine retina with intact rod outer segments were treated with pore-forming staphylococcal α-toxin, including an α-toxin mutant that forms pores whose permeability is modulated by Zn2+. The pores formed through the plasma membranes of rod cells permit the diffusion of small molecules <2 kDa but prevent the loss of proteins, including recoverin (25 kDa). The selective permeability of these pores was confirmed by using the small intracellular tracer N-(2-aminoethyl) biotinamide hydrochloride. Application of [γ-32P]ATP to α-toxin-treated, isolated retina allowed us to monitor and quantify phosphorylation of Rho*. Under various experimental conditions, including low and high [Ca2+]free, the same level of Rho* phosphorylation was measured. No differences were observed between low and high [Ca2+]free conditions, even when rods were loaded with ATP and the pores were closed by Zn2+. These results suggest that under physiological conditions, Rho* phosphorylation is insensitive to regulation by Ca2+ and Ca2+-binding proteins, including recoverin.