187 resultados para hemotropic mycoplasma
Resumo:
The recently accomplished complete genomic sequence analysis of the type strain PG1 of Mycoplasma mycoides subsp. mycoides small-colony type revealed four large repeated segments of 24, 13, 12, and 8 kb that are flanked by insertion sequence (IS) elements. Genetic analysis of type strain PG1 and African, European, and Australian field and vaccine strains revealed that the 24-kb genetic locus is repeated only in PG1 and not in other M. mycoides subsp. mycoides SC strains. In contrast, the 13-kb genetic locus was found duplicated in some strains originating from Africa and Australia but not in strains that were isolated from the European outbreaks. The 12- and 8-kb genetic loci were found in two and three copies, respectively, in all 28 strains analyzed. The flanking IS elements are assumed to lead to these tandem duplications, thus contributing to genomic plasticity. This aspect must be considered when designing novel diagnostic approaches and recombinant vaccines.
Resumo:
Mycoplasma hyopneumoniae is the etiological agent of enzootic pneumonia in swine. Various reports indicate that different strains are circulating in the swine population. We investigated the variety of M. hyopneumoniae strains by a newly developed genetic typing method based on the polyserine repeat motif of the LppS homolog P146. PCR amplification using M. hyopneumoniae specific, conserved primers flanking the region encoding the repeat motif, followed by sequencing and cluster analysis was carried out. The study included strains isolated from different geographic regions as well as lysates from lung swabs from a series of pig farms in Switzerland. High diversity of M. hyopneumoniae was observed but farms being in close geographic or operative contact generally seemed to be affected by the same strains. Moreover, analysis of multiple samples from single pig farms indicated that these harbored the same, farm-specific strain. The results indicate that multiple strains of M. hyopneumoniae are found in the swine population but that specific strains or clones are responsible for local outbreaks. The method presented is a highly reproducible epidemiologic tool allowing direct typing of M. hyopneumoniae from clinical material without prior isolation and cultivation of strains.
Resumo:
Mycoplasma mycoides subsp. mycoides SC, the aetiological agent of contagious bovine pleuropneumonia (CBPP), is considered the most pathogenic of the Mycoplasma species. Its virulence is probably the result of a coordinated action of various components of an antigenically and functionally dynamic surface architecture. The different virulence attributes allow the pathogen to evade the host's immune defence, adhere tightly to the host cell surface, persist and disseminate in the host causing mycoplasmaemia, efficiently import energetically valuable nutrients present in the environment, and release and simultaneously translocate toxic metabolic pathway products to the host cell where they cause cytotoxic effects that are known to induce inflammatory processes and disease. This strategy enables the mycoplasma to exploit the minimal genetic information in its small genome, not only to fulfil the basic functions for its replication but also to damage host cells in intimate proximity thereby acquiring the necessary bio-molecules, such as amino acids and nucleic acid precursors, for its own biosynthesis and survival.
Resumo:
Infectious keratoconjunctivitis (IKC), caused by Mycoplasma conjunctivae, is a highly contagious ocular disease in Caprinae. To detect rapidly and sensitively M. conjunctivae from individual conjunctival swabs of infected domestic and wild animals, a specific real-time PCR was developed using an lppS-directed hydrolysis probe in a TaqMan platform.
Resumo:
BACKGROUND: Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC) is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H2O2 production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP) in the bgl gene coding for the 6-phospho-beta-glucosidase (Bgl) has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val204, from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala204. RESULTS: Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val204, but not strains with the Bgl isoform Ala204, do trigger elevated levels of damage to embryonic bovine lung (EBL) cells upon incubation with the disaccharides (i.e., beta-D-glucosides) sucrose and lactose. However, strains expressing the Bgl isoform Val204 show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-beta-D-glucopyranoside (pNPbG) when compared to strains that possess the Bgl isoform Ala204. Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H2O2 production. Rather, the viability during addition of beta-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val204 than for those with the isoform Ala204. CONCLUSION: Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as a direct virulence factor, but strains possessing the Bgl isoform Val204 with low hydrolysing activity are more prone to survive in environments that contain high levels of beta-D-glucosides, thus contributing in some extent to mycoplasmaemia.
Resumo:
The lipoprotein LppQ is the most prominent antigen of Mycoplasma mycoides subsp. mycoides small colony type (SC) during infection of cattle. This pathogen causes contagious bovine pleuropneumonia (CBPP), a devastating disease of considerable socio-economic importance in many countries worldwide. The dominant antigenicity and high specificity for M. mycoides subsp. mycoides SC of lipoprotein LppQ have been exploited for serological diagnosis and for epidemiological investigations of CBPP. Scanning electron microscopy and immunogold labelling were used to provide ultrastructural evidence that LppQ is located to the cell membrane at the outer surface of M. mycoides subsp. mycoides SC. The selectivity and specificity of this method were demonstrated through discriminating localization of extracellular (i.e., in the zone of contact with host cells) vs. integral membrane domains of LppQ. Thus, our findings support the suggestion that the accessible N-terminal domain of LppQ is surface exposed and such surface localization may be implicated in the pathogenesis of CBPP.
Resumo:
L-alpha-glycerophosphate oxidase (GlpO) plays a central role in virulence of Mycoplasma mycoides subsp. mycoides SC, a severe bacterial pathogen causing contagious bovine pleuropneumonia (CBPP). It is involved in production and translocation of toxic H(2)O(2) into the host cell, causing inflammation and cell death. The binding site on GlpO for the cofactor flavin adenine dinucleotide (FAD) has been identified as Gly(12)-Gly(13)-Gly(14)-Ile(15)-Ile(16)-Gly(17). Recombinant GlpO lacking these six amino acids (GlpODeltaFAD) was unable to bind FAD and was also devoid of glycerophosphate oxidase activity, in contrast to non-modified recombinant GlpO that binds FAD and is enzymatically active. Polyclonal monospecific antibodies directed against GlpODeltaFAD, similarly to anti-GlpO antibodies, neutralised H(2)O(2) production of M. mycoides subsp. mycoides SC grown in the presence of glycerol, as well as cytotoxicity towards embryonic calf nasal epithelial (ECaNEp) cells. The FAD-binding site of GlpO is therefore suggested as a valuable target site for the future construction of deletion mutants to yield attenuated live vaccines of M. mycoides subsp. mycoides SC necessary to efficiently combat CBPP.
Resumo:
BACKGROUND: The mollicute Mycoplasma conjunctivae is the etiological agent leading to infectious keratoconjunctivitis (IKC) in domestic sheep and wild caprinae. Although this pathogen is relatively benign for domestic animals treated by antibiotics, it can lead wild animals to blindness and death. This is a major cause of death in the protected species in the Alps (e.g., Capra ibex, Rupicapra rupicapra). METHODS: The genome was sequenced using a combined technique of GS-FLX (454) and Sanger sequencing, and annotated by an automatic pipeline that we designed using several tools interconnected via PERL scripts. The resulting annotations are stored in a MySQL database. RESULTS: The annotated sequence is deposited in the EMBL database (FM864216) and uploaded into the mollicutes database MolliGen http://cbi.labri.fr/outils/molligen/ allowing for comparative genomics. CONCLUSION: We show that our automatic pipeline allows for annotating a complete mycoplasma genome and present several examples of analysis in search for biological targets (e.g., pathogenic proteins).
Resumo:
Glycerol is one of the few carbon sources that can be utilized by Mycoplasma pneumoniae. Glycerol metabolism involves uptake by facilitated diffusion, phosphorylation, and the oxidation of glycerol 3-phosphate to dihydroxyacetone phosphate, a glycolytic intermediate. We have analyzed the expression of the genes involved in glycerol metabolism and observed constitutive expression irrespective of the presence of glycerol or preferred carbon sources. Similarly, the enzymatic activity of glycerol kinase is not modulated by HPr-dependent phosphorylation. This lack of regulation is unique among the bacteria for which glycerol metabolism has been studied so far. Two types of enzymes catalyze the oxidation of glycerol 3-phosphate: oxidases and dehydrogenases. Here, we demonstrate that the enzyme encoded by the M. pneumoniae glpD gene is a glycerol 3-phosphate oxidase that forms hydrogen peroxide rather than NADH(2). The formation of hydrogen peroxide by GlpD is crucial for cytotoxic effects of M. pneumoniae. A glpD mutant exhibited a significantly reduced formation of hydrogen peroxide and a severely reduced cytotoxicity. Attempts to isolate mutants affected in the genes of glycerol metabolism revealed that only the glpD gene, encoding the glycerol 3-phosphate oxidase, is dispensable. In contrast, the glpF and glpK genes, encoding the glycerol facilitator and the glycerol kinase, respectively, are essential in M. pneumoniae. Thus, the enzymes of glycerol metabolism are crucial for the pathogenicity of M. pneumoniae but also for other essential, yet-to-be-identified functions in the M. pneumoniae cell.
Resumo:
The Mycoplasma mycoides cluster consists of six pathogenic mycoplasmas causing disease in ruminants, which share many genotypic and phenotypic traits. The M. mycoides cluster comprises five recognized taxa: Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), M. mycoides subsp. mycoides Large Colony (MmmLC), M. mycoides subsp. capri (Mmc), Mycoplasma capricolum subsp. capricolum (Mcc) and M. capricolum subsp. capripneumoniae (Mccp). The group of strains known as Mycoplasma sp. bovine group 7 of Leach (MBG7) has remained unassigned, due to conflicting data obtained by different classification methods. In the present paper, all available data, including recent phylogenetic analyses, have been reviewed, resulting in a proposal for an emended taxonomy of this cluster: (i) the MBG7 strains, although related phylogenetically to M. capricolum, hold sufficient characteristic traits to be assigned as a separate species, i.e. Mycoplasma leachii sp. nov. (type strain, PG50(T) = N29(T) = NCTC 10133(T) = DSM 21131(T)); (ii) MmmLC and Mmc, which can only be distinguished by serological methods and are related more distantly to MmmSC, should be combined into a single subspecies, i.e. Mycoplasma mycoides subsp. capri, leaving M. mycoides subsp. mycoides (MmmSC) as the exclusive designation for the agent of contagious bovine pleuropneumonia. A taxonomic description of M. leachii sp. nov. and emended descriptions of M. mycoides subsp. mycoides and M. mycoides subsp. capri are presented. As a result of these emendments, the M. mycoides cluster will hereafter be composed of five taxa comprising three subclusters, which correspond to the M. mycoides subspecies, the M. capricolum subspecies and the novel species M. leachii.
Resumo:
Mycoplasma conjunctivae is considered the major cause of infectious keratoconjunctivitis (IKC) in Alpine ibex (Capra i. ibex) and chamois (Rupicapra r. rupicapra). While it is known that domestic sheep can act as healthy carriers for M. conjunctivae, this question has not been addressed in wild ungulates so far. In this study, bacteriological investigations and field observations were performed to assess whether free-ranging Alpine ibex can be healthy carriers of M. conjunctivae. Among 136 ibex without clinical signs of IKC, M. conjunctivae was identified 26 times (19.1%) by TaqMan PCR. To assess the potential pathogenicity of M. conjunctivae strains isolated from asymptomatic eyes, strains from three healthy ibex and from 15 IKC-ibex and IKC-chamois were analysed genetically by DNA sequence analysis of the variable part of the lppS gene. No significant differences were observed between strains from asymptomatic and clinically affected animals, reflecting the assumption that healthy ibex may act as carriers for M. conjunctivae strains that may be pathogenic for other individuals. Our results further indicate that development of IKC is associated with M. conjunctivae load in the eyes. In addition, a questionnaire survey revealed that IKC is generally less common in ibex than chamois and that infection in wild ungulates is not necessarily linked to the presence of sheep. These data support the hypothesis that apparently healthy ibex may be important in the epizootiology of IKC and indicate that host predilection may play a role in IKC development.
Resumo:
A multilocus sequence typing (MLST) scheme was established and evaluated for Mycoplasma hyopneumoniae, the etiologic agent of enzootic pneumonia in swine with the aim of defining strains. Putative target genes were selected by genome sequence comparisons. Out of 12 housekeeping genes chosen and experimentally validated, the 7 genes efp, metG, pgiB, recA, adk, rpoB, and tpiA were finally used to establish the MLST scheme. Their usefulness was assessed individually and in combination using a set of well-defined field samples and strains of M. hyopneumoniae. A reduction to the three targets showing highest variation (adk, rpoB, and tpiA) was possible resulting in the same number of sequence types as using the seven targets. The established MLST approach was compared with the recently described typing method using the serine-rich repeat motif-encoding region of the p146 gene. There was coherence between the two methods, but MLST resulted in a slightly higher resolution. Farms recognized to be affected by enzootic pneumonia were always associated with a single M. hyopneumoniae clone, which in most cases differed from farm to farm. However, farms in close geographic or operational contact showed identical clones as defined by MLST typing. Population analysis showed that recombination in M. hyopneumoniae occurs and that strains are very diverse with only limited clonality observed. Elaborate classical MLST schemes using multiple targets for M. hyopneumoniae might therefore be of limited value. In contrast, MLST typing of M. hyopneumoniae using the three genes adk, rpoB, and tpiA seems to be sufficient for epidemiological investigations by direct amplification of target genes from lysate of clinical material without prior cultivation.
Resumo:
Enzootic pneumonia (EP) of pigs, caused by Mycoplasma hyopneumoniae has been a notifiable disease in Switzerland since May 2003. The diagnosis of EP has been based on multiple methods, including clinical, bacteriological and epidemiological findings as well as pathological examination of lungs (mosaic diagnosis). With the recent development of a real-time PCR (rtPCR) assay with 2 target sequences a new detection method for M. hyopneumoniae became available. This assay was tested for its applicability to nasal swab material from live animals. Pigs from 74 herds (average 10 pigs per herd) were tested. Using the mosaic diagnosis, 22 herds were classified as EP positive and 52 as EP negative. From the 730 collected swab samples we were able to demonstrate that the rtPCR test was 100% specific. In cases of cough the sensitivity on herd level of the rtPCR is 100%. On single animal level and in herds without cough the sensitivity was lower. In such cases, only a positive result would be proof for an infection with M. hyopneumoniae. Our study shows that the rtPCR on nasal swabs from live pigs allows a fast and accurate diagnosis in cases of suspected EP.