998 resultados para heat value


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work examined the histological effects, on the rat palatal mucosa, of a denture base acrylic resin, submitted or not to a post-polymerization heat-treatment. Methods: Fifteen adult female Wistar rats, with sixty days old, weighting 150 g – 250 g were divided in G1: animals being maintained under the same conditions as the experimental groups following described, but without the use acrylic palatal plates (control group); G2: use of heat-polymerized acrylic resin palatal plates made of Lucitone 550; G3: use of palatal plates identical to G2, but subjected to a post-polymerization treatment in a water bath at 55°C for 60 min. The plates covered all the palate and were fixed in the molar region with light-cured resin, thus being kept there for 14 days. After the sacrifice, the palate was removed, fixed in formaldehyde 10% and decalcified with EDTA. Sections were stained using haematoxylin and eosin. Images in duplicate were made from the central region of the cuts, to measure the thickness (μm) of the keratin layers (TKC), epithelium total (TET) and connective tissue (TCC). Statistical analyses were carried out by one-way ANOVA and Tukey post-tests (α=0.05). Results: According to the results there was significant difference in the thickness of keratin between G2 and G3, with G1 having the intermediate value and similar to the other groups. There was a significant difference in the connective tissue with G3 heat treatment it was found to be effective, from the viewpoint of biocompatibility, for the acrylic resin denture base investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports on the influence of heat and hydrogen peroxide combination on the inactivation kinetics of two heat resistant molds: Neosartorya fischeri and Paecilomyces variotii. Spores of different ages (1 and 4 months) of these molds were prepared and D-values (the time required at certain temperature/hydrogen peroxide combination to inactivate 90% of the mold ascospores) were determined using thermal death tubes. D-values found for P. variotii ranged from 1.2 to 25.1 s after exposure to different combinations of heat (40 or 60 degrees C) and hydrogen peroxide (35 or 40% w/w) while for N. fischeri they varied from 2.7 to 14.3 s after exposure to the same hydrogen peroxide concentrations and higher temperatures (60 or 70 degrees C). The influence of temperature and hydrogen peroxide concentration on the d-values varied with the genus of mold and their ages. A synergistic effect of heat and hydrogen peroxide in reducing D-values of Paecilomyces variotti and N. fischeri has been observed. In addition to strict control of temperature, time and hydrogen concentration, hygienic storage and handling of laminated paperboard material must be considered to reduce the probability of package's contamination. All these measures together will ensure package's sterility that is imperative for the effectiveness of aseptic processing and consequently to ensure the microbiological stability of processed foods during shelf-life. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy transfer (ET) and heat generation processes in Yb3+/Ho3+-codoped low-silica calcium aluminosilicate glasses were investigated using thermal lens (TL) and photoluminescence measurements looking for the emission around 2.0 μm. Stepwise ET processes from Yb3+ to Ho3+, upon excitation at 0.976 μm, produced highly efficient emission in the mid-infrared range at around 2.0 μm, with high fluorescence quantum efficiency (η1 ∼ 0.85 and independent of Ho3+ concentration) and relatively very low thermal loading (<0.4) for concentration up to 1.5% of Ho2O3. An equation was deduced for the description of the TL results that provided the absolute value of η1 and the number of emitted photons at 2.0 μm per absorbed pump photon by the Yb3+ ions, the latter reaching 60% for the highest Ho3+ concentration. These results suggest that the studied codoped system would be a promising candidate for the construction of photonic devices, especially for medical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD thesis describes set up of technological models for obtaining high health value foods and ingredients that preserve the final product characteristics as well as enrich with nutritional components. In particular, the main object of my research has been Virgin Olive Oil (VOO) and its important antioxidant compounds which differentiate it from all other vegetables oils. It is well known how the qualitative and quantitative presence of phenolic molecules extracted from olives during oil production is fundamental for its oxidative and nutritional quality. For this purpose, agronomic and technological conditions of its production have been investigated. It has also been examined how this fraction can be better preserved during storage. Moreover, its relation with VOO sensorial characteristics and its interaction with a protein in emulsion foods have also been studied. Finally, an experimental work was carried out to determine the antioxidative and heat resistance properties of a new antioxidant (EVS-OL) when used for high temperature frying such as is typically employed for the preparation of french fries. Results of the scientific research have been submitted for a publication and some data has already been published in national and international scientific journals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years, the European countries have paid increasing attention to renewable sources and greenhouse emissions. The Council of the European Union and the European Parliament have established ambitious targets for the next years. In this scenario, biomass plays a prominent role since its life cycle produces a zero net carbon dioxide emission. Additionally, biomass can ensure plant operation continuity thanks to its availability and storage ability. Several conventional systems running on biomass are available at the moment. Most of them are performant either in the large-scale or in the small power range. The absence of an efficient system on the small-middle scale inspired this thesis project. The object is an innovative plant based on a wet indirectly fired gas turbine (WIFGT) integrated with an organic Rankine cycle (ORC) unit for combined heat and power production. The WIFGT is a performant system in the small-middle power range; the ORC cycle is capable of giving value to low-temperature heat sources. Their integration is investigated in this thesis with the aim of carrying out a preliminary design of the components. The targeted plant output is around 200 kW in order not to need a wide cultivation area and to avoid biomass shipping. Existing in-house simulation tools are used: They are adapted to this purpose. Firstly the WIFGT + ORC model is built; Zero-dimensional models of heat exchangers, compressor, turbines, furnace, dryer and pump are used. Different fluids are selected but toluene and benzene turn out to be the most suitable. In the indirectly fired gas turbine a pressure ratio around 4 leads to the highest efficiency. From the thermodynamic analysis the system shows an electric efficiency of 38%, outdoing other conventional plants in the same power range. The combined plant is designed to recover thermal energy: Water is used as coolant in the condenser. It is heated from 60°C up to 90°C, ensuring the possibility of space heating. Mono-dimensional models are used to design the heat exchange equipment. Different types of heat exchangers are chosen depending on the working temperature. A finned-plate heat exchanger is selected for the WIFGT heat transfer equipment due to the high temperature, oxidizing and corrosive environment. A once-through boiler with finned tubes is chosen to vaporize the organic fluid in the ORC. A plate heat exchanger is chosen for the condenser and recuperator. A quasi-monodimensional model for single-stage axial turbine is implemented to design both the WIFGT and the ORC turbine. The system simulation after the components design shows an electric efficiency around 34% with a decrease by 10% compared to the zero-dimensional analysis. The work exhibits the system potentiality compared to the existing plants from both technical and economic point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seeking biomarkers reflecting disease development in cystic echinococcosis (CE), we used a proteomic approach linked to immunological characterisation for the identification of respective antigens. Two-dimensional gel electrophoresis (2-DE) of sheep hydatid fluid, followed by immunoblot analysis (IB) with sera from patients with distinct phases of disease, enabled us to identify by mass spectrometry heat shock protein 20 (HSP20) as a potential marker of active CE. Using IB, antibodies specific to the 34 kDa band of HSP20 were detected in sera from 61/95 (64%) patients with CE, but not in sera from healthy subjects. IB revealed anti-HSP20 antibodies in a higher percentage of sera from patients with active disease than in sera from patients with inactive disease (81 vs. 24%; P = 10(-4)). These primary results were confirmed in a long-term follow-up study after pharmacological and surgical treatment. Herewith anti-HSP20 antibody levels significantly decreased over the course of treatment in sera from patients with cured disease, relative to sera from patients with progressive disease (P = 0.017). Thus, during CE, a comprehensive strategy of proteomic identification combined with immunological validation represents a promising approach for the identification of biomarkers useful for the prognostic assessment of treatment of CE patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Clostridium perfringens type A food poisoning is caused by enterotoxigenic C. perfringens type A isolates that typically possess high spore heat-resistance. The molecular basis for C. perfringens spore heat-resistance remains unknown. In the current study, we investigated the role of small, acid-soluble spore proteins (SASPs) in heat-resistance of spores produced by C. perfringens food poisoning isolates. RESULTS: Our current study demonstrated the presence of all three SASP-encoding genes (ssp1, 2 and 3) in five surveyed C. perfringens clinical food poisoning isolates. beta-Glucuronidase assay showed that these ssp genes are expressed specifically during sporulation. Consistent with these expression results, our study also demonstrated the production of SASPs by C. perfringens food poisoning isolates. When the heat sensitivities of spores produced by a ssp3 knock-out mutant of a C. perfringens food poisoning isolate was compared with that of spores of the wild-type strain, spores of the ssp3 mutant were found to exhibit a lower decimal reduction value (D value) at 100 degrees C than exhibited by the spores of wild-type strain. This effect was restored by complementing the ssp3 mutant with a recombinant plasmid carrying wild-type ssp3, suggesting that the observed differences in D values between spores of wild-type versus ssp3 mutant was due to the specific inactivation of ssp3. Furthermore, our DNA protection assay demonstrated that C. perfringens SASPs can protect DNA from DNase I digestion. CONCLUSION: The results from our current study provide evidences that SASPs produced by C. perfringens food poisoning isolates play a role in protecting their spores from heat-damage, which is highly significant and relevant from a food safety perspective. Further detailed studies on mechanism of action of SASPs from C. perfringens should help in understanding the mechanism of protection of C. perfringens spores from heat-damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From January to March 1987, heat flow measurements were tried at four sites (Sites 689, 690, 695, and 696) during ODP Leg 113, in the Weddell Sea, Antarctica. At Site 690 (Maud Rise), a convex upward shaped temperature vs. depth profile was observed. This profile cannot be explained by steady-state conduction through solid materials only. We conclude that the minimum heat flow value at Site 690 is 45 mW/m2. A prominent bottom simulating reflector (BSR) was observed at 600 mbsf at Site 695. However, the observed temperature is too high to explain the BSR as a gas hydrate. The origin of the BSR remains unknown, although it is probably of biogenic origin as observed in the Bering Sea during DSDP Leg 19. After correcting for the effects of sedimentation, heat flow values at Sites 695 and 696 are 69 and 63 mW/m2, respectively. Furthermore, we compiled heat flow data south of 50°S. In the Weddell Sea region, the eastern part shows relatively low heat flow in comparison with the western part, with the boundary between them at about 15°W longitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of snow on East Antarctic sea ice off Wilkes Land were examined during the Sea Ice Physics and Ecosystem Experiment (SIPEX) in late winter of 2007, focusing on the interaction with sea ice. This observation includes 11 transect lines for the measurement of ice thickness, freeboard, and snow depth, 50 snow pits on 13 ice floes, and diurnal variation of surface heat flux on three ice floes. The detailed profiling of topography along the transects and the d18O, salinity, and density datasets of snow made it possible to examine the snow-sea-ice interaction quantitatively for the first time in this area. In general, the snow displayed significant heterogeneity in types, thickness (mean: 0.14 +- 0.13 m), and density (325 +- 38 kg/m**3), as reported in other East Antarctic regions. High salinity was confined to the lowest 0.1 m. Salinity and d18O data within this layer revealed that saline water originated from the surface brine of sea ice in 20% of the total sites and from seawater in 80%. From the vertical profiles of snow density, bulk thermal conductivity of snow was estimated as 0.15 W/K/m on average, only half of the value used for numerical sea-ice models. Although the upward heat flux within snow estimated with this value was significantly lower than that within ice, it turned out that a higher value of thermal conductivity (0.3 to 0.4 W/K/m) is preferable for estimating ice growth amount in current numerical models. Diurnal measurements showed that upward conductive heat flux within the snow and net long-wave radiation at the surface seem to play important roles in the formation of snow ice from slush. The detailed surface topography allowed us to compare the air-ice drag coefficients of ice and snow surfaces under neutral conditions, and to examine the possibility of the retrieval of ice thickness distribution from satellite remote sensing. It was found that overall snow cover works to enhance the surface roughness of sea ice rather than moderate it, and increases the drag coefficient by about 10%. As for thickness retrieval, mean ice thickness had a higher correlation with ice surface roughness than mean freeboard or surface elevation, which indicates the potential usefulness of satellite L-band SAR in estimating the ice thickness distribution in the seasonal sea-ice zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tectonic structure and anomalous distributions of geophysical fields of the Sea of Okhotsk region are considered; the lack of reliable data on age of the lithosphere beneath basins of various origin in the Sea of Okhotsk is noted. Model calculations based on geological and geophysical data yielded 65 Ma (Cretaceous-Paleocene boundary) age for the Central Okhotsk rise underlain by the continental lithosphere. This estimate agrees with the age (the end of Cretaceous) derived from seismostratigraphic data. A comparative analysis of theoretical and measured heat flows in the Akademii Nauk Rise, underlain by the thinned continental crust, is performed. The analysis points to a higher (by 20%) value of the measured thermal background of the rise, which is consistent with high negative gradient of gravity anomalies in this area. Calculations yielded 36 Ma (Early Oligocene) age and lithosphere thickness of 50 km for the South Okhotsk depression, whose seafloor was formed by processes of back-arc spreading. The estimated age of the depression is supported by kinematic data on the region; the calculated thickness of the lithosphere coincides with the value estimated from data of magnetotelluric sounding here. This indicates that formation time (36 Ma) of the South Okhotsk depression was estimated correctly. Numerical modeling performed for determination of the basement age of rifting basins in the Sea of Okhotsk gave the following estimates: 18 Ma (Early Miocene) for the Deryugin Basin, 12 Ma (Middle Miocene) for the TINRO Basin, and 23 Ma (Late Oligocene) for the West Kamchatka Trough. These estimates agree with formation time (Oligocene-Quaternary) of the sedimentary cover in rifting basins of the Sea of Okhotsk derived from geological and geophysical data. Model temperature estimates are obtained for lithologic and stratigraphic boundaries of the sedimentary cover in the Deryugin and TINRO Basins and the West Kamchatka Trough; the temperature analysis indicates that the latter two structures are promising for oil and hydrocarbon gas generation; the West Kamchatka Trough possesses better reservoir properties compared to the TINRO and Deryugin Basins. The latter is promising for generation of hydrocarbon gas. Paleogeodynamic reconstructions of the Sea of Okhotsk region evolution are obtained for times of 90, 66, and 36 Ma on the base of kinematic, geomagnetic, structural, tectonic, geothermal, and other geological and geophysical data.