890 resultados para guided-wave optics
Resumo:
We study the quantum dynamics of a two-mode Bose-Einstein condensate in a time-dependent symmetric double-well potential using analytical and numerical methods. The effects of internal degrees of freedom on the visibility of interference fringes during a stage of ballistic expansion are investigated varying particle number, nonlinear interaction sign and strength, as well as tunneling coupling. Expressions for the phase resolution are derived and the possible enhancement due to squeezing is discussed. In particular, the role of the superfluid-Mott insulator crossover and its analog for attractive interactions is recognized.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An alternative formulation for guided electromagnetic fields in grounded chiral slabs is presented. This formulation is formally equivalent to the double Fourier transform method used by the authors to calculate the spectral fields in open chirostrip structures. In this paper, we have addressed the behavior of the electromagnetic fields in the vicinity of the ground plane and at the interface between the chiral substrate and the free space region. It was found that the boundary conditions for the magnetic field, valid for achiral media, are not completely satisfied when we deal with chiral material. Effects of chirality on electromagnetic field distributions and on surface wave dispersion curves were also analyzed.
Resumo:
An all-fiber approach to terahertz generation using a periodically poled optical fiber is proposed and experimentally demonstrated. In the proposed approach, a continuous-wave THz wave is generated at a periodically poled fiber by beating two optical wavelengths from two laser sources with the wavelength spacing corresponding to the frequency of the THz wave. The key component in the system is the periodically poled fiber, which is made by a twin-hole fiber with the fiber core residing between two holes. The twin-hole fiber is then thermally poled at a temperature of similar to 260 degrees C with a voltage of 3.3 kV applied to the silver electrodes inside the two holes to introduce second-order nonlinearity. The quasi phase matching (QPM) condition is achieved by periodically erasing the thermal poling induced second-order nonlinearity with an ultraviolet laser, which enhances the energy conversion efficiency. The proposed approach is validated by an experiment. The emission of a THz wave centered at 3.8 THz with an output power of 0.5 mu W is observed. The frequency tunability between 2.2 and 3.8 THz is also experimentally demonstrated.
Resumo:
Degeneration of tendon tissue is a common cause of tendon dysfunction with the symptoms of repeated episodes of pain and palpable increase of tendon thickness. Tendon mechanical properties are directly related to its physiological composition and the structural organization of the interior collagen fibers which could be altered by tendon degeneration due to overuse or injury. Thus, measuring mechanical properties of tendon tissue may represent a quantitative measurement of pain, reduced function, and tissue health. Ultrasound elasticity imaging has been developed in the last two decades and has proved to be a promising tool for tissue elasticity imaging. To date, however, well established protocols of tendinopathy elasticity imaging for diagnosing tendon degeneration in early stages or late stages do not exist. This thesis describes the re-creation of one dynamic ultrasound elasticity imaging method and the development of an ultrasound transient shear wave elasticity imaging platform for tendon and other musculoskeletal tissue imaging. An experimental mechanical stage with proper supporting systems and accurate translating stages was designed and made. A variety of high-quality tissue-mimicking phantoms were made to simulate homogeneous and heterogeneous soft tissues as well as tendon tissues. A series of data acquisition and data processing programs were developed to collect the displacement data from the phantom and calculate the shear modulus and Young’s modulus of the target. The imaging platform was found to be capable of conducting comparative measurements of the elastic parameters of the phantoms and quantitatively mapping elasticity onto ultrasound B-Mode images. This suggests the system has great potential for not only benefiting individuals with tendinopathy with an earlier detection, intervention and better rehabilitation, but also for providing a medical tool for quantification of musculoskeletal tissue dysfunction in other regions of the body such as the shoulder, elbow and knee.
Resumo:
A Nd:YLF/KGW Raman laser has been investigated in this work. We have demonstrated CW output powers at six different wavelengths, 1147 nm (0.70 W), 1163 nm (0.95 W), 549 nm (0.65 W), 552 nm (1.90 W), 573 nm (0.60 W) and 581 nm (1.10 W), with higher peak powers achieved under quasi-CW operation. Raman conversion of the 1053 nm fundamental emission is reported for the first time, enabling two new wavelengths in crystalline Raman lasers, 549 nm and 552 nm. The weak thermal lensing associated with Nd:YLF has enabled to achieve good beam quality, M-2 <= 2.0, and stable operation in relatively long cavities. (C) 2012 Optical Society of America
Resumo:
Matter-wave superradiance is based on the interplay between ultracold atoms coherently organized in momentum space and a backscattered wave. Here, we show that this mechanism may be triggered by Mie scattering from the atomic cloud. We show how the laser light populates the modes of the cloud and thus imprints a phase gradient on the excited atomic dipoles. The interference with the atoms in the ground state results in a grating that in turn generates coherent emission, contributing to the backward light wave onset. The atomic recoil "halos" created by the Mie-scattered light exhibit a strong anisotropy, in contrast to single-atom scattering.
Resumo:
We propose a slow-wave MEMS phase shifter that can be fabricated using the CMOS back-end and an additional maskless post-process etch. The tunable phase shifter concept is formed by a conventional slow-wave transmission line. The metallic ribbons that form the patterned floating shield of this type of structure are released to allow motion when a control voltage is applied, which changes the characteristic impedance and the phase velocity. For this device a quality factor greater than 40 can be maintained, resulting in a figure of merit on the order of 0.7 dB/360 degrees and a total area smaller than 0.14 mm(2) for a 60-GHz working frequency. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The use of guided ultrasonic waves (GUW) has increased considerably in the fields of non-destructive (NDE) testing and structural health monitoring (SHM) due to their ability to perform long range inspections, to probe hidden areas as well as to provide a complete monitoring of the entire waveguide. Guided waves can be fully exploited only once their dispersive properties are known for the given waveguide. In this context, well stated analytical and numerical methods are represented by the Matrix family methods and the Semi Analytical Finite Element (SAFE) methods. However, while the former are limited to simple geometries of finite or infinite extent, the latter can model arbitrary cross-section waveguides of finite domain only. This thesis is aimed at developing three different numerical methods for modelling wave propagation in complex translational invariant systems. First, a classical SAFE formulation for viscoelastic waveguides is extended to account for a three dimensional translational invariant static prestress state. The effect of prestress, residual stress and applied loads on the dispersion properties of the guided waves is shown. Next, a two-and-a-half Boundary Element Method (2.5D BEM) for the dispersion analysis of damped guided waves in waveguides and cavities of arbitrary cross-section is proposed. The attenuation dispersive spectrum due to material damping and geometrical spreading of cavities with arbitrary shape is shown for the first time. Finally, a coupled SAFE-2.5D BEM framework is developed to study the dispersion characteristics of waves in viscoelastic waveguides of arbitrary geometry embedded in infinite solid or liquid media. Dispersion of leaky and non-leaky guided waves in terms of speed and attenuation, as well as the radiated wavefields, can be computed. The results obtained in this thesis can be helpful for the design of both actuation and sensing systems in practical application, as well as to tune experimental setup.
Resumo:
This thesis reports on the experimental realization, characterization and application of a novel microresonator design. The so-called “bottle microresonator” sustains whispering-gallery modes in which light fields are confined near the surface of the micron-sized silica structure by continuous total internal reflection. While whispering-gallery mode resonators in general exhibit outstanding properties in terms of both temporal and spatial confinement of light fields, their monolithic design makes tuning of their resonance frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics (CQED) experiments, which investigate the interaction of single quantum mechanical emitters of predetermined resonance frequency with a cavity mode. In contrast, the highly prolate shape of the bottle microresonators gives rise to a customizable mode structure, enabling full tunability. The thesis is organized as follows: In chapter I, I give a brief overview of different types of optical microresonators. Important quantities, such as the quality factor Q and the mode volume V, which characterize the temporal and spatial confinement of the light field are introduced. In chapter II, a wave equation calculation of the modes of a bottle microresonator is presented. The intensity distribution of different bottle modes is derived and their mode volume is calculated. A brief description of light propagation in ultra-thin optical fibers, which are used to couple light into and out of bottle modes, is given as well. The chapter concludes with a presentation of the fabrication techniques of both structures. Chapter III presents experimental results on highly efficient, nearly lossless coupling of light into bottle modes as well as their spatial and spectral characterization. Ultra-high intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated. In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly lossless coupling characteristics of each fiber combined with the resonator's high intrinsic quality factor, enable resonant power transfers between both fibers with efficiencies exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive index of silica yields optical Kerr bistability at record low powers on the order of 50 µW. Combined with the add-drop configuration, this allows one to route optical signals between the outputs of both ultra-thin fibers, simply by varying the input power, thereby enabling applications in all-optical signal processing. Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED experiments with single atoms. Its Q/V-ratio, which determines the ratio of the atom-cavity coupling rate to the dissipative rates of the subsystems, aligns with the values obtained for state-of-the-art CQED microresonators. In combination with its full tunability and the possibility of highly efficient light transfer to and from the bottle mode, this makes the bottle microresonator a unique tool for quantum optics applications.
Resumo:
Generation of coherent short-wavelength radiation across a plasma column is dramatically improved under traveling-wave excitation (TWE). The latter is optimized when its propagation is close to the speed of light, which implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles in order to increase the optical penetration of the pump into the plasma core. Pulse-front back-tilt is considered to overcome such trade-off. In fact, the TWE speed depends on the pulse-front slope (envelope of amplitude), whereas the optical penetration depth depends on the wave-front slope (envelope of phase). Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a high-magnification front-end imaging/focusing component. It is concluded that speed matching should be accomplished with minimal compressor misalignment and maximal imaging magnification.
Resumo:
One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.
Analytic study of traveling-wave velocity variation in line-focusing schemes for plasma x-ray lasers
Resumo:
Pure and quinine doped silica coatings have been prepared over sodalime glasses. The coatings were consolidated at low temperature (range 60-180 A degrees C) preserving optical activity of quinine molecule. We designed a device to test the guiding properties of the coatings. We confirmed with this device that light injected in pure silica coatings is guided over distances of meters while quinine presence induces isotropic photoluminescence. With the combined use of both type of coatings, it is possible to design light guiding devices and illuminate regions in glass elements without electronic circuits.