913 resultados para grid-based spatial data
Resumo:
Most authors struggle to pick a title that adequately conveys all of the material covered in a book. When I first saw Applied Spatial Data Analysis with R, I expected a review of spatial statistical models and their applications in packages (libraries) from the CRAN site of R. The authors’ title is not misleading, but I was very pleasantly surprised by how deep the word “applied” is here. The first half of the book essentially covers how R handles spatial data. To some statisticians this may be boring. Do you want, or need, to know the difference between S3 and S4 classes, how spatial objects in R are organized, and how various methods work on the spatial objects? A few years ago I would have said “no,” especially to the “want” part. Just let me slap my EXCEL spreadsheet into R and run some spatial functions on it. Unfortunately, the world is not so simple, and ultimately we want to minimize effort to get all of our spatial analyses accomplished. The first half of this book certainly convinced me that some extra effort in organizing my data into certain spatial class structures makes the analysis easier and less subject to mistakes. I also admit that I found it very interesting and I learned a lot.
Resumo:
Spatial data warehouses (SDWs) allow for spatial analysis together with analytical multidimensional queries over huge volumes of data. The challenge is to retrieve data related to ad hoc spatial query windows according to spatial predicates, avoiding the high cost of joining large tables. Therefore, mechanisms to provide efficient query processing over SDWs are essential. In this paper, we propose two efficient indices for SDW: the SB-index and the HSB-index. The proposed indices share the following characteristics. They enable multidimensional queries with spatial predicate for SDW and also support predefined spatial hierarchies. Furthermore, they compute the spatial predicate and transform it into a conventional one, which can be evaluated together with other conventional predicates by accessing a star-join Bitmap index. While the SB-index has a sequential data structure, the HSB-index uses a hierarchical data structure to enable spatial objects clustering and a specialized buffer-pool to decrease the number of disk accesses. The advantages of the SB-index and the HSB-index over the DBMS resources for SDW indexing (i.e. star-join computation and materialized views) were investigated through performance tests, which issued roll-up operations extended with containment and intersection range queries. The performance results showed that improvements ranged from 68% up to 99% over both the star-join computation and the materialized view. Furthermore, the proposed indices proved to be very compact, adding only less than 1% to the storage requirements. Therefore, both the SB-index and the HSB-index are excellent choices for SDW indexing. Choosing between the SB-index and the HSB-index mainly depends on the query selectivity of spatial predicates. While low query selectivity benefits the HSB-index, the SB-index provides better performance for higher query selectivity.
Resumo:
Determination of the utility harmonic impedance based on measurements is a significant task for utility power-quality improvement and management. Compared to those well-established, accurate invasive methods, the noninvasive methods are more desirable since they work with natural variations of the loads connected to the point of common coupling (PCC), so that no intentional disturbance is needed. However, the accuracy of these methods has to be improved. In this context, this paper first points out that the critical problem of the noninvasive methods is how to select the measurements that can be used with confidence for utility harmonic impedance calculation. Then, this paper presents a new measurement technique which is based on the complex data-based least-square regression, combined with two techniques of data selection. Simulation and field test results show that the proposed noninvasive method is practical and robust so that it can be used with confidence to determine the utility harmonic impedances.
Resumo:
In many application domains data can be naturally represented as graphs. When the application of analytical solutions for a given problem is unfeasible, machine learning techniques could be a viable way to solve the problem. Classical machine learning techniques are defined for data represented in a vectorial form. Recently some of them have been extended to deal directly with structured data. Among those techniques, kernel methods have shown promising results both from the computational complexity and the predictive performance point of view. Kernel methods allow to avoid an explicit mapping in a vectorial form relying on kernel functions, which informally are functions calculating a similarity measure between two entities. However, the definition of good kernels for graphs is a challenging problem because of the difficulty to find a good tradeoff between computational complexity and expressiveness. Another problem we face is learning on data streams, where a potentially unbounded sequence of data is generated by some sources. There are three main contributions in this thesis. The first contribution is the definition of a new family of kernels for graphs based on Directed Acyclic Graphs (DAGs). We analyzed two kernels from this family, achieving state-of-the-art results from both the computational and the classification point of view on real-world datasets. The second contribution consists in making the application of learning algorithms for streams of graphs feasible. Moreover,we defined a principled way for the memory management. The third contribution is the application of machine learning techniques for structured data to non-coding RNA function prediction. In this setting, the secondary structure is thought to carry relevant information. However, existing methods considering the secondary structure have prohibitively high computational complexity. We propose to apply kernel methods on this domain, obtaining state-of-the-art results.
Resumo:
In this paper, we focus on the model for two types of tumors. Tumor development can be described by four types of death rates and four tumor transition rates. We present a general semi-parametric model to estimate the tumor transition rates based on data from survival/sacrifice experiments. In the model, we make a proportional assumption of tumor transition rates on a common parametric function but no assumption of the death rates from any states. We derived the likelihood function of the data observed in such an experiment, and an EM algorithm that simplified estimating procedures. This article extends work on semi-parametric models for one type of tumor (see Portier and Dinse and Dinse) to two types of tumors.
Resumo:
AIMS: A registry mandated by the European Society of Cardiology collects data on trends in interventional cardiology within Europe. Special interest focuses on relative increases and ratios in new techniques and their distributions across Europe. We report the data through 2004 and give an overview of the development of coronary interventions since the first data collection in 1992. METHODS AND RESULTS: Questionnaires were distributed yearly to delegates of all national societies of cardiology represented in the European Society of Cardiology. The goal was to collect the case numbers of all local institutions and operators. The overall numbers of coronary angiographies increased from 1992 to 2004 from 684 000 to 2 238 000 (from 1250 to 3930 per million inhabitants). The respective numbers for percutaneous coronary interventions (PCIs) and coronary stenting procedures increased from 184 000 to 885 000 (from 335 to 1550) and from 3000 to 770 000 (from 5 to 1350), respectively. Germany was the most active country with 712 000 angiographies (8600), 249 000 angioplasties (3000), and 200 000 stenting procedures (2400) in 2004. The indication has shifted towards acute coronary syndromes, as demonstrated by rising rates of interventions for acute myocardial infarction over the last decade. The procedures are more readily performed and perceived safer, as shown by increasing rate of "ad hoc" PCIs and decreasing need for emergency coronary artery bypass grafting (CABG). In 2004, the use of drug-eluting stents continued to rise. However, an enormous variability is reported with the highest rate in Switzerland (70%). If the rate of progression remains constant until 2010 the projected number of coronary angiographies will be over three million, and the number of PCIs about 1.5 million with a stenting rate of almost 100%. CONCLUSION: Interventional cardiology in Europe is ever expanding. New coronary revascularization procedures, alternative or complementary to balloon angioplasty, have come and gone. Only stenting has stood the test of time and matured to the default technique. Facilitated access to PCI, more complete and earlier detection of coronary artery disease promise continued growth of the procedure despite the uncontested success of prevention.
Resumo:
Data of twenty buoy stations were used to compile a new chart of permanent currents in the surface layer (10 m depth) for the region of the Yucatan shelf (Campeche Bank). It was found that vertical variations in direction of the currents are insignificant within the shallow plateau of the banks.
Resumo:
The selection of predefined analytic grids (partitions of the numeric ranges) to represent input and output functions as histograms has been proposed as a mechanism of approximation in order to control the tradeoff between accuracy and computation times in several áreas ranging from simulation to constraint solving. In particular, the application of interval methods for probabilistic function characterization has been shown to have advantages over other methods based on the simulation of random samples. However, standard interval arithmetic has always been used for the computation steps. In this paper, we introduce an alternative approximate arithmetic aimed at controlling the cost of the interval operations. Its distinctive feature is that grids are taken into account by the operators. We apply the technique in the context of probability density functions in order to improve the accuracy of the probability estimates. Results show that this approach has advantages over existing approaches in some particular situations, although computation times tend to increase significantly when analyzing large functions.