961 resultados para grassland stream
Resumo:
As part of a wider study to develop an ecosystem-health monitoring program for wadeable streams of south-eastern Queensland, Australia, comparisons were made regarding the accuracy, precision and relative efficiency of single-pass backpack electrofishing and multiple-pass electrofishing plus supplementary seine netting to quantify fish assemblage attributes at two spatial scales (within discrete mesohabitat units and within stream reaches consisting of multiple mesohabitat units). The results demonstrate that multiple-pass electrofishing plus seine netting provide more accurate and precise estimates of fish species richness, assemblage composition and species relative abundances in comparison to single-pass electrofishing alone, and that intensive sampling of three mesohabitat units (equivalent to a riffle-run-pool sequence) is a more efficient sampling strategy to estimate reach-scale assemblage attributes than less intensive sampling over larger spatial scales. This intensive sampling protocol was sufficiently sensitive that relatively small differences in assemblage attributes (<20%) could be detected with a high statistical power (1-β > 0.95) and that relatively few stream reaches (<4) need be sampled to accurately estimate assemblage attributes close to the true population means. The merits and potential drawbacks of the intensive sampling strategy are discussed, and it is deemed to be suitable for a range of monitoring and bioassessment objectives.
Resumo:
This paper describes the relative influence of: (i) landscape scale environmental and hydrological factors; (ii) local scale environmental conditions including recent flow history, and; (iii) spatial effects (proximity of sites to one another) on the spatial and temporal variation in local freshwater fish assemblages in the Mary River, south-eastern Queensland, Australia. Using canonical correspondence analysis, each of the three sets of variables explained similar amounts of variation in fish assemblages (ranging from 44 to 52%). Variation in fish assemblages was partitioned into eight unique components: pure environmental, pure spatial, pure temporal, spatially structured environmental variation, temporally structured environmental variation, spatially structured temporal variation, the combined spatial/temporal component of environmental variation and unexplained variation. The total variation explained by these components was 65%. The combined spatial/temporal/environmental component explained the largest component (30%) of the total variation in fish assemblages, whereas pure environmental (6%), temporal (9%) and spatial (2%) effects were relatively unimportant. The high degree of intercorrelation between the three different groups of explanatory variables indicates that our understanding of the importance to fish assemblages of hydrological variation (often highlighted as the major structuring force in river systems) is dependent on the environmental context in which this role is examined.
Resumo:
We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.
Resumo:
To better understand how freshwater ecosystems respond to changes in catchment land-use, it is important to develop measures of ecological health that include aspects of both ecosystem structure and function. This study investigated measures of nutrient processes as potential indicators of stream ecosystem health across a land-use gradient from relatively undisturbed to highly modified. A total of seven indicators (potential denitrification; an index of denitrification potential relative to sediment organic matter; benthic algal growth on artificial substrates amended with (a) N only, (b) P only, and (c) N and P; and δ15N of aquatic plants and benthic sediment) were measured at 53 streams in southeast Queensland, Australia. The indicators were evaluated by their response to a defined gradient of agricultural land-use disturbance as well as practical aspects of using the indicators as part of a monitoring program. Regression models based on descriptors of the disturbance gradient explained a large proportion of the variation in six of the seven indicators. Denitrification index, algal growth in N amended substrate, and δ15N of aquatic plants demonstrated the best regression. However, the δ15N value of benthic sediment was found to be the best indicator overall for incorporation into a monitoring program, as samples were relatively easy to collect and process, and were successfully collected at more than 90% of the study sites.
Resumo:
1. Biodiversity, water quality and ecosystem processes in streams are known to be influenced by the terrestrial landscape over a range of spatial and temporal scales. Lumped attributes (i.e. per cent land use) are often used to characterise the condition of the catchment; however, they are not spatially explicit and do not account for the disproportionate influence of land located near the stream or connected by overland flow. 2. We compared seven landscape representation metrics to determine whether accounting for the spatial proximity and hydrological effects of land use can be used to account for additional variability in indicators of stream ecosystem health. The landscape metrics included the following: a lumped metric, four inverse-distance-weighted (IDW) metrics based on distance to the stream or survey site and two modified IDW metrics that also accounted for the level of hydrologic activity (HA-IDW). Ecosystem health data were obtained from the Ecological Health Monitoring Programme in Southeast Queensland, Australia and included measures of fish, invertebrates, physicochemistry and nutrients collected during two seasons over 4 years. Linear models were fitted to the stream indicators and landscape metrics, by season, and compared using an information-theoretic approach. 3. Although no single metric was most suitable for modelling all stream indicators, lumped metrics rarely performed as well as other metric types. Metrics based on proximity to the stream (IDW and HA-IDW) were more suitable for modelling fish indicators, while the HA-IDW metric based on proximity to the survey site generally outperformed others for invertebrates, irrespective of season. There was consistent support for metrics based on proximity to the survey site (IDW or HA-IDW) for all physicochemical indicators during the dry season, while a HA-IDW metric based on proximity to the stream was suitable for five of the six physicochemical indicators in the post-wet season. Only one nutrient indicator was tested and results showed that catchment area had a significant effect on the relationship between land use metrics and algal stable isotope ratios in both seasons. 4. Spatially explicit methods of landscape representation can clearly improve the predictive ability of many empirical models currently used to study the relationship between landscape, habitat and stream condition. A comparison of different metrics may provide clues about causal pathways and mechanistic processes behind correlative relationships and could be used to target restoration efforts strategically.
Resumo:
We study the multicast stream authentication problem when an opponent can drop, reorder and inject data packets into the communication channel. In this context, bandwidth limitation and fast authentication are the core concerns. Therefore any authentication scheme is to reduce as much as possible the packet overhead and the time spent at the receiver to check the authenticity of collected elements. Recently, Tartary and Wang developed a provably secure protocol with small packet overhead and a reduced number of signature verifications to be performed at the receiver. In this paper, we propose an hybrid scheme based on Tartary and Wang’s approach and Merkle hash trees. Our construction will exhibit a smaller overhead and a much faster processing at the receiver making it even more suitable for multicast than the earlier approach. As Tartary and Wang’s protocol, our construction is provably secure and allows the total recovery of the data stream despite erasures and injections occurred during transmission.
Resumo:
The Common Scrambling Algorithm Stream Cipher (CSASC) is a shift register based stream cipher designed to encrypt digital video broadcast. CSA-SC produces a pseudo-random binary sequence that is used to mask the contents of the transmission. In this paper, we analyse the initialisation process of the CSA-SC keystream generator and demonstrate weaknesses which lead to state convergence, slid pairs and shifted keystreams. As a result, the cipher may be vulnerable to distinguishing attacks, time-memory-data trade-off attacks or slide attacks.
Resumo:
Bit-Stream based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. Bit-Stream signals are inherently high frequency in nature, and as such some form of down sampling or modulating is essential to avoid excessive switching losses. This paper presents a novel three-phase space vector modulator, which is based on the Bit-Stream technique and suitable for standard three-phase inverter systems. The proposed modulator simultaneously converts a two phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulator consumes relatively few logic elements and does not require sector detectors, carrier oscillators or trigonometric functions. The performance of the modulator was evaluated using ModelSim. Results indicate that, subject to limits on the modulation index, the proposed modulator delivers a spread-spectrum output with total harmonic distortion comparable to standard space vector pulse width modulation techniques.
Resumo:
Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4,5,6,7,8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.
Resumo:
Humans dominate many important Earth system processes including the nitrogen (N) cycle. Atmospheric N deposition affects fundamental processes such as carbon cycling, climate regulation, and biodiversity, and could result in changes to fundamental Earth system processes such as primary production. Both modelling and experimentation have suggested a role for anthropogenically altered N deposition in increasing productivity, nevertheless, current understanding of the relative strength of N deposition with respect to other controls on production such as edaphic conditions and climate is limited. Here we use an international multiscale data set to show that atmospheric N deposition is positively correlated to aboveground net primary production (ANPP) observed at the 1-m2 level across a wide range of herbaceous ecosystems. N deposition was a better predictor than climatic drivers and local soil conditions, explaining 16% of observed variation in ANPP globally with an increase of 1 kg N·ha-1·yr-1 increasing ANPP by 3%. Soil pH explained 8% of observed variation in ANPP while climatic drivers showed no significant relationship. Our results illustrate that the incorporation of global N deposition patterns in Earth system models are likely to substantially improve estimates of primary production in herbaceous systems. In herbaceous systems across the world, humans appear to be partially driving local ANPP through impacts on the N cycle.
Resumo:
The response of grasslands to disturbance varies with the nature of the disturbance and the productivity of the landscape. In highly productive grasslands, competitive exclusion often results in decreased species richness and grazing may allow more species to coexist. Once widespread, grasslands dominated by Dichanthium sericeum (Queensland bluegrass) and Astrebla spp. (Mitchell grass) occur on fertile plains but have been reduced in extent by cultivation. We tested the effects of exclusion of livestock grazing on these grasslands by comparing the floristic composition of sites in a nature reserve with an adjacent stock reserve. In addition, sites that had been cultivated within the nature reserve were compared with those where grazing but no cultivation had occurred. To partition the effects of temporal variation from spatial variation we sampled sites in three different years (1998, 2002 and 2004). Some 194 taxa were recorded at the nature reserve and surrounding stock routes. Sampling time, the occurrence of past cultivation and livestock grazing all influenced species composition. Species richness varied greatly between sampling periods relating to highly variable rainfall and water availability on heavy clay soils. Native species richness was significantly lower at previously cultivated sites (13-22 years after cultivation), but was not significantly influenced by grazing exclusion. After 8 years it appears that reintroducing disturbance in the form of livestock grazing is not necessary to maintain plant species richness in the reserve. The highly variable climate (e.g. droughts) probably plays an important role in the coexistence of species by negating competitive exclusion and allowing interstitial species to persist.
Resumo:
The effects of the hydrological regime on temporal changes to physical characteristics of substratum habitat, sediment texture of surface sediments (<10 cm), were investigated in a sub-tropical headwater stream over four years. Surface discharge was measured together with vertical hydraulic gradient and groundwater depth in order to explore features of sediment habitat that extend beyond the streambed surface. Whilst the typical discharge pattern was one of intermittent base flows and infrequent flow events associated with monsoonal rain patterns, the study period also encompassed a drought and a one-in-a-hundred-year flood. Rainfall and discharge did not necessarily reflect the actual conditions in the stream. Although surface waters were persistent long after discharge ceased, the streambed was completely dry on several occasions. Shallow groundwater was present at variable depths throughout the study period, being absent only at the height of the drought. The streambed sediments were mainly gravels, sand and clay. Finer sediment fractions showed a marked change in grain size over time, although bedload movement was limited to a single high discharge event. In response to a low discharge regimen (drought), sediments characteristically showed non-normal distributions and were dominated by finer materials. A high-energy discharge event produced a coarsening of sands and a diminished clay fraction in the streambed. Particulate organic matter from sediments showed trends of build-up and decline with the high and low discharge regimes, respectively. Within the surface sediment intersticies three potential categories of invertebrate habitat were recognised, each with dynamic spatial and temporal boundaries.
Resumo:
The critical stream power criterion may be used to describe the incipient motion of cohesionless particles of plane sediment beds. The governing equation relating ``critical stream power'' to ``shear Reynolds number'' is developed by using the present experimental data as well as the data from several other sources. Simultaneously, a resistance equation, relating the ``particle Reynolds number'' to the``shear Reynolds number'' is developed for plane sediment beds in wide channels with little or no transport. By making use of these relations, a procedure is developed to design plane sediment beds such that any two of the four design variables, including particle size, energy/friction slope, flow depth, and discharge per unit width in the channel should be known to predict the remaining two variables. Finally, a straightforward design procedure using design tables/design curves and analytical methods is presented to solve six possible design problems.
Resumo:
BACKGROUND OR CONTEXT The concept of 'Aboriginal engineering' has had little exposure in conventional engineering education programs, despite more than 40,000 years of active human engagement with the diverse Australian environment. The work reported in this paper began with the premise that Indigenous Student Support Through Indigenous Perspectives Embedded in Engineering Curricula (Goldfinch, et al 2013) would provide a clear and replicable means of encouraging Aboriginal teenagers to consider a career in engineering. Although that remains a key outcome of this OLT project, the direction taken by the research had led to additional insights and perspectives that have wide implications for engineering education more generally. There has only been passing reference to the achievements of Aboriginal engineering in current texts, and the very absence of such references was a prompt to explore further as our work developed. PURPOSE OR GOAL Project goals focused on curriculum-based change, including development of a model for inclusive teaching spaces, and study units employing key features of the model. As work progressed we found we needed to understand more about the principles and practices informing the development of pre-contact Aboriginal engineering strategies for sustaining life and society within the landscape of this often harsh continent. We also found ourselves being asked 'what engineering did Aboriginal cultures have?' Finding that there are no easy-to- access answers, we began researching the question, while continuing to engage with specific curriculum trials. APPROACH Stakeholders in the project had been identified as engineering educators, potential Aboriginal students and Aboriginal communities local to Universities involved in the project. We realised, early on, that at least one more group was involved - all the non-Aboriginal students in engineering classes. This realisation, coupled with recognition of the need to understand Aboriginal engineering as a set of viable, long term practices, altered the focus of our efforts. Rather than focusing primarily on finding ways to attract Aboriginal engineering students, the shift has been towards evolving ways of including knowledge about Aboriginal practices and principles in relevant engineering content. DISCUSSION This paper introduces the model resulting from the work of this project, explores its potential influence on engineering curriculum development and reports on implementation strategies. The model is a static representation of a dynamic and cyclic approach to engaging with Aboriginal engineering through contact with local communities in regard to building knowledge about the social beliefs underlying Aboriginal engineering principles and practices. Ways to engage engineering educators, students and the wider community are evolving through the continuing work of the project team and will be reported in more detail in the paper. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION While engineering may be considered by some to be agnostic in regard to culture and social issues, the work of this project is drawing attention to the importance of including such issues into curriculum materials at a number of levels of complexity. The paper will introduce and explore the central concepts of the research completed to date, as well as suggesting ways in which engineering educators can extend their knowledge and understanding of Aboriginal engineering principles in the context of their own specialisations.