869 resultados para grafi multi-livello social network algebra linguaggi multi layer multislice multiplex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract 1: Social Networks such as Twitter are often used for disseminating and collecting information during natural disasters. The potential for its use in Disaster Management has been acknowledged. However, more nuanced understanding of the communications that take place on social networks are required to more effectively integrate this information into the processes within disaster management. The type and value of information shared should be assessed, determining the benefits and issues, with credibility and reliability as known concerns. Mapping the tweets in relation to the modelled stages of a disaster can be a useful evaluation for determining the benefits/drawbacks of using data from social networks, such as Twitter, in disaster management.A thematic analysis of tweets’ content, language and tone during the UK Storms and Floods 2013/14 was conducted. Manual scripting was used to determine the official sequence of events, and classify the stages of the disaster into the phases of the Disaster Management Lifecycle, to produce a timeline. Twenty- five topics discussed on Twitter emerged, and three key types of tweets, based on the language and tone, were identified. The timeline represents the events of the disaster, according to the Met Office reports, classed into B. Faulkner’s Disaster Management Lifecycle framework. Context is provided when observing the analysed tweets against the timeline. This illustrates a potential basis and benefit for mapping tweets into the Disaster Management Lifecycle phases. Comparing the number of tweets submitted in each month with the timeline, suggests users tweet more as an event heightens and persists. Furthermore, users generally express greater emotion and urgency in their tweets.This paper concludes that the thematic analysis of content on social networks, such as Twitter, can be useful in gaining additional perspectives for disaster management. It demonstrates that mapping tweets into the phases of a Disaster Management Lifecycle model can have benefits in the recovery phase, not just in the response phase, to potentially improve future policies and activities. Abstract2: The current execution of privacy policies, as a mode of communicating information to users, is unsatisfactory. Social networking sites (SNS) exemplify this issue, attracting growing concerns regarding their use of personal data and its effect on user privacy. This demonstrates the need for more informative policies. However, SNS lack the incentives required to improve policies, which is exacerbated by the difficulties of creating a policy that is both concise and compliant. Standardization addresses many of these issues, providing benefits for users and SNS, although it is only possible if policies share attributes which can be standardized. This investigation used thematic analysis and cross- document structure theory, to assess the similarity of attributes between the privacy policies (as available in August 2014), of the six most frequently visited SNS globally. Using the Jaccard similarity coefficient, two types of attribute were measured; the clauses used by SNS and the coverage of forty recommendations made by the UK Information Commissioner’s Office. Analysis showed that whilst similarity in the clauses used was low, similarity in the recommendations covered was high, indicating that SNS use different clauses, but to convey similar information. The analysis also showed that low similarity in the clauses was largely due to differences in semantics, elaboration and functionality between SNS. Therefore, this paper proposes that the policies of SNS already share attributes, indicating the feasibility of standardization and five recommendations are made to begin facilitating this, based on the findings of the investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is the guest editors' introduction to a special issue on using Social Network Research in the field of Human Resource Management. The goals of the special issue are: (1) to draw attention to the points of integration between the two fields, (2) to showcase research that applies social network perspectives and methodology to issues relevant to HRM and (3) to identify common challenges where future collaborative efforts could contribute to advancements in both fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an application of Social Network Analysis methods for identification of knowledge demands in public organisations. Affiliation networks established in a postgraduate programme were analysed. The course was executed in a distance education mode and its students worked on public agencies. Relations established among course participants were mediated through a virtual learning environment using Moodle. Data available in Moodle may be extracted using knowledge discovery in databases techniques. Potential degrees of closeness existing among different organisations and among researched subjects were assessed. This suggests how organisations could cooperate for knowledge management and also how to identify their common interests. The study points out that closeness among organisations and research topics may be assessed through affiliation networks. This opens up opportunities for applying knowledge management between organisations and creating communities of practice. Concepts of knowledge management and social network analysis provide the theoretical and methodological basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of social network sites (SNS) has become very valuable to educational institutions. Some universities have formally integrated these social media in their educational systems and are using them to improve their service delivery. The main aim of this study was to establish whether African universities have embraced this emerging technology by having official presence on SNS. A purposive sampling method was used to study 24 universities from which data were obtained by visiting their official websites and following the official links to the most common SNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cluster provides a greater commercial relationship between the companies that comprise it. This encourages companies to adopt competitive structures that allow solving problems that would hardly alone (Lubeck et. Al., 2011). With that this paper aims to describe the coopetition between companies operating on a commercial cluster planned, from the point of view of retailers, taking as a basis the theoretical models proposed by Bengtsson and Kock (1999) and Leon (2005) and operationalized by means of Social Network Analysis (SNA). Data collection consisted of two phases, the first exploratory aspect to identify the actors, and the second was characterized as descriptive as it aims to describe the coopetition among the enterprises. As a result we identified the companies that cooperate and compete simultaneously (coopetition), firms that only compete, companies just cooperate and businesses that do not compete and do not cooperate (coexistence)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2008, academic researchers and public service officials created a university extension studies platform based on online and on-site meetings denominated "Work-Related Accidents Forum: Analysis, Prevention, and Other Relevant Aspects. Its aim was to help public agents and social partners to propagate a systemic approach that would be helpful in the surveillance and prevention of work-related accidents. This article describes and analyses such a platform. Online access is free and structured to: support dissemination of updated concepts; support on-site meetings and capacity to build educational activities; and keep a permanent space for debate among the registered participants. The desired result is the propagation of a social-technical-systemic view of work-related accidents that replaces the current traditional view that emphasizes human error and results in blaming the victims. The Forum uses an educational approach known as permanent health education, which is based on the experience and needs of workers and encourages debate among participants. The forum adopts a problematizing pedagogy that starts from the requirements and experiences of the social actors and stimulates support and discussions among them in line with an ongoing health educational approach. The current challenge is to turn the platform into a social networking website in order to broaden its links with society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past few years, vehicular ad hoc networks(VANETs) was studied extensively by researchers. VANETs is a type of P2P network, though it has some distinct characters (fast moving, short lived connection etc.). In this paper, we present several limitations of current trust management schemes in VANETs and propose ways to counter them. We first review several trust management techniques in VANETs and argue that the ephemeral nature of VANETs render them useless in practical situations. We identify that the problem of information cascading and oversampling, which commonly arise in social networks, also adversely affects trust management schemes in VANETs. To the best of our knowledge, we are the first to introduce information cascading and oversampling to VANETs. We show that simple voting for decision making leads to oversampling and gives incorrect results in VANETs. To overcome this problem, we propose a novel voting scheme. In our scheme, each vehicle has different voting weight according to its distance from the event. The vehicle which is more closer to the event possesses higher weight. Simulations show that our proposed algorithm performs better than simple voting, increasing the correctness of voting. © 2012 Springer Science + Business Media, LLC.