983 resultados para gradient methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a promising method for pattern recognition and function estimation, least squares support vector machines (LS-SVM) express the training in terms of solving a linear system instead of a quadratic programming problem as for conventional support vector machines (SVM). In this paper, by using the information provided by the equality constraint, we transform the minimization problem with a single equality constraint in LS-SVM into an unconstrained minimization problem, then propose reduced formulations for LS-SVM. By introducing this transformation, the times of using conjugate gradient (CG) method, which is a greatly time-consuming step in obtaining the numerical solution, are reduced to one instead of two as proposed by Suykens et al. (1999). The comparison on computational speed of our method with the CG method proposed by Suykens et al. and the first order and second order SMO methods on several benchmark data sets shows a reduction of training time by up to 44%. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of reported learning methods for Takagi-Sugeno-Kang fuzzy neural models to date mainly focus on the improvement of their accuracy. However, one of the key design requirements in building an interpretable fuzzy model is that each obtained rule consequent must match well with the system local behaviour when all the rules are aggregated to produce the overall system output. This is one of the distinctive characteristics from black-box models such as neural networks. Therefore, how to find a desirable set of fuzzy partitions and, hence, to identify the corresponding consequent models which can be directly explained in terms of system behaviour presents a critical step in fuzzy neural modelling. In this paper, a new learning approach considering both nonlinear parameters in the rule premises and linear parameters in the rule consequents is proposed. Unlike the conventional two-stage optimization procedure widely practised in the field where the two sets of parameters are optimized separately, the consequent parameters are transformed into a dependent set on the premise parameters, thereby enabling the introduction of a new integrated gradient descent learning approach. A new Jacobian matrix is thus proposed and efficiently computed to achieve a more accurate approximation of the cost function by using the second-order Levenberg-Marquardt optimization method. Several other interpretability issues about the fuzzy neural model are also discussed and integrated into this new learning approach. Numerical examples are presented to illustrate the resultant structure of the fuzzy neural models and the effectiveness of the proposed new algorithm, and compared with the results from some well-known methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radical cations He-2(+) (H2O)(2)(+), and (NH3)(2)(+) with two-center three-electron A-A bonds are investigated at the configuration interaction (CI), accurate Kohn-Sham (KS), generalized gradient approximation (GGA), and meta-GGA levels. Assessment of seven different GGA and six meta-GGA methods shows that the A(2)(+) systems remain a difficult case for density functional theory (DFT). All methods tested consistently overestimate the stability of A(2)(+): the corresponding D-e errors decrease for more diffuse valence densities in the series He-2(+) > (H2O)(2)(+) > (NH3)(2)(+). Upon comparison to the energy terms of the accurate Kohn-Sham solutions, the approximate exchange functionals are found to be responsible for the errors of GGA-type methods, which characteristically overestimate the exchange in A(2)(+). These so-called exchange functionals implicitly use localized holes. Such localized holes do occur if there is left-right correlation, i.e., the exchange functionals then also describe nondynamical correlation. However, in the hemibonded A(2)(+) systems the typical molecular (left-right, nondynamical) correlation of the two-electron pair bond is absent. The nondynamical correlation built into the exchange functionals is then spurious and yields too low energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bioavailability of soil arsenic (As) is determined by its speciation in soil solution, i.e., arsenite [As(III)] or arsenate [As(V)]. Soil bioavailability studies require suitable methods to cope with small volumes of soil solution that can be speciated directly after sampling, and thereby minimise any As speciation change during sample collection. In this study, we tested a self-made microcartridge to separate both As species and compared it to a commercially available cartridge. In addition, the diffusive gradient in thin films technique (DGT), in combination with the microcartridges, was applied to synthetic solutions and to a soil spiked with As. This combination was used to improve the assessment of available inorganic As species with ferrihydrite(FH)-DGT, in order to validate the technique for environmental analysis, mainly in soils. The self-made microcartridge was effective in separating As(III) from As(V) in solution with detection by inductively coupled plasma optical emission spectrometry (ICP-OES) in volumes of only 3 ml. The DGT study also showed that the FH-based binding gels are effective for As(III) and As(V) assessment, in solutions with As and P concentrations and ionic strength commonly found in soils. The FH-DGT was tested on flooded and unflooded As spiked soils and recoveries of As(III) and As(V) were 85–104% of the total dissolved As. This study shows that the DGT with FH-based binding gel is robust for assessing inorganic species of As in soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, gradient vector flow (GVF) based algorithms have been successfully used to segment a variety of 2-D and 3-D imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods may lead to biased segmentation results. In this paper, we propose MSGVF, a mean shift based GVF segmentation algorithm that can successfully locate the correct borders. MSGVF is developed so that when the contour reaches equilibrium, the various forces resulting from the different energy terms are balanced. In addition, the smoothness constraint of image pixels is kept so that over- or under-segmentation can be reduced. Experimental results on publicly accessible datasets of dermoscopic and optic disc images demonstrate that the proposed method effectively detects the borders of the objects of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With improved B 0 homogeneity along with satisfactory gradient performance at high magnetic fields, snapshot gradient-recalled echo-planar imaging (GRE-EPI) would perform at long echo times (TEs) on the order of T2*, which intrinsically allows obtaining strongly T2*-weighted images with embedded substantial anatomical details in ultrashort time. The aim of this study was to investigate the feasibility and quality of long TE snapshot GRE-EPI images of rat brain at 9.4 T. When compensating for B 0 inhomogeneities, especially second-order shim terms, a 200 x 200 microm2 in-plane resolution image was reproducibly obtained at long TE (>25 ms). The resulting coronal images at 30 ms had diminished geometric distortions and, thus, embedded substantial anatomical details. Concurrently with the very consistent stability, such GRE-EPI images should permit to resolve functional data not only with high specificity but also with substantial anatomical details, therefore allowing coregistration of the acquired functional data on the same image data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several automated reversed-phase HPLC methods have been developed to determine trace concentrations of carbamate pesticides (which are of concern in Ontario environmental samples) in water by utilizing two solid sorbent extraction techniques. One of the methods is known as on-line pre-concentration'. This technique involves passing 100 milliliters of sample water through a 3 cm pre-column, packed with 5 micron ODS sorbent, at flow rates varying from 5-10 mUmin. By the use of a valve apparatus, the HPLC system is then switched to a gradient mobile phase program consisting of acetonitrile and water. The analytes, Propoxur, Carbofuran, Carbaryl, Propham, Captan, Chloropropham, Barban, and Butylate, which are pre-concentrated on the pre-column, are eluted and separated on a 25 cm C-8 analytical column and determined by UV absorption at 220 nm. The total analytical time is 60 minutes, and the pre-column can be used repeatedly for the analysis of as many as thirty samples. The method is highly sensitive as 100 percent of the analytes present in the sample can be injected into the HPLC. No breakthrough of any of the analytes was observed and the minimum detectable concentrations range from 10 to 480 ng/L. The developed method is totally automated for the analysis of one sample. When the above mobile phase is modified with a buffer solution, Aminocarb, Benomyl, and its degradation product, MBC, can also be detected along with the above pesticides with baseline resolution for all of the analytes. The method can also be easily modified to determine Benomyl and MBC both as solute and as particulate matter. By using a commercially available solid phase extraction cartridge, in lieu of a pre-column, for the extraction and concentration of analytes, a completely automated method has been developed with the aid of the Waters Millilab Workstation. Sample water is loaded at 10 mL/min through a cartridge and the concentrated analytes are eluted from the sorbent with acetonitrile. The resulting eluate is blown-down under nitrogen, made up to volume with water, and injected into the HPLC. The total analytical time is 90 minutes. Fifty percent of the analytes present in the sample can be injected into the HPLC, and recoveries for the above eight pesticides ranged from 84 to 93 percent. The minimum detectable concentrations range from 20 to 960 ng/L. The developed method is totally automated for the analysis of up to thirty consecutive samples. The method has proven to be applicable to both purer water samples as well as untreated lake water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Darrerament, l'interès pel desenvolupament d'aplicacions amb robots submarins autònoms (AUV) ha crescut de forma considerable. Els AUVs són atractius gràcies al seu tamany i el fet que no necessiten un operador humà per pilotar-los. Tot i això, és impossible comparar, en termes d'eficiència i flexibilitat, l'habilitat d'un pilot humà amb les escasses capacitats operatives que ofereixen els AUVs actuals. L'utilització de AUVs per cobrir grans àrees implica resoldre problemes complexos, especialment si es desitja que el nostre robot reaccioni en temps real a canvis sobtats en les condicions de treball. Per aquestes raons, el desenvolupament de sistemes de control autònom amb l'objectiu de millorar aquestes capacitats ha esdevingut una prioritat. Aquesta tesi tracta sobre el problema de la presa de decisions utilizant AUVs. El treball presentat es centra en l'estudi, disseny i aplicació de comportaments per a AUVs utilitzant tècniques d'aprenentatge per reforç (RL). La contribució principal d'aquesta tesi consisteix en l'aplicació de diverses tècniques de RL per tal de millorar l'autonomia dels robots submarins, amb l'objectiu final de demostrar la viabilitat d'aquests algoritmes per aprendre tasques submarines autònomes en temps real. En RL, el robot intenta maximitzar un reforç escalar obtingut com a conseqüència de la seva interacció amb l'entorn. L'objectiu és trobar una política òptima que relaciona tots els estats possibles amb les accions a executar per a cada estat que maximitzen la suma de reforços totals. Així, aquesta tesi investiga principalment dues tipologies d'algoritmes basats en RL: mètodes basats en funcions de valor (VF) i mètodes basats en el gradient (PG). Els resultats experimentals finals mostren el robot submarí Ictineu en una tasca autònoma real de seguiment de cables submarins. Per portar-la a terme, s'ha dissenyat un algoritme anomenat mètode d'Actor i Crític (AC), fruit de la fusió de mètodes VF amb tècniques de PG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid development of proteomics, a number of different methods appeared for the basic task of protein identification. We made a simple comparison between a common liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow using an ion trap mass spectrometer and a combined LC-MS and LC-MS/MS method using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry and accurate peptide masses. To compare the two methods for protein identification, we grew and extracted proteins from E. coli using established protocols. Cystines were reduced and alkylated, and proteins digested by trypsin. The resulting peptide mixtures were separated by reversed-phase liquid chromatography using a 4 h gradient from 0 to 50% acetonitrile over a C18 reversed-phase column. The LC separation was coupled on-line to either a Bruker Esquire HCT ion trap or a Bruker 7 tesla APEX-Qe Qh-FTICR hybrid mass spectrometer. Data-dependent Qh-FTICR-MS/MS spectra were acquired using the quadrupole mass filter and collisionally induced dissociation into the external hexapole trap. Proteins were in both schemes identified by Mascot MS/MS ion searches and the peptides identified from these proteins in the FTICR MS/MS data were used for automatic internal calibration of the FTICR-MS data, together with ambient polydimethylcyclosiloxane ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasingly, the microbiological scientific community is relying on molecular biology to define the complexity of the gut flora and to distinguish one organism from the next. This is particularly pertinent in the field of probiotics, and probiotic therapy, where identifying probiotics from the commensal flora is often warranted. Current techniques, including genetic fingerprinting, gene sequencing, oligonucleotide probes and specific primer selection, discriminate closely related bacteria with varying degrees of success. Additional molecular methods being employed to determine the constituents of complex microbiota in this area of research are community analysis, denaturing gradient gel electrophoresis (DGGE)/temperature gradient gel electrophoresis (TGGE), fluorescent in situ hybridisation (FISH) and probe grids. Certain approaches enable specific aetiological agents to be monitored, whereas others allow the effects of dietary intervention on bacterial populations to be studied. Other approaches demonstrate diversity, but may not always enable quantification of the population. At the heart of current molecular methods is sequence information gathered from culturable organisms. However, the diversity and novelty identified when applying these methods to the gut microflora demonstrates how little is known about this ecosystem. Of greater concern is the inherent bias associated with some molecular methods. As we understand more of the complexity and dynamics of this diverse microbiota we will be in a position to develop more robust molecular-based technologies to examine it. In addition to identification of the microbiota and discrimination of probiotic strains from commensal organisms, the future of molecular biology in the field of probiotics and the gut flora will, no doubt, stretch to investigations of functionality and activity of the microflora, and/or specific fractions. The quest will be to demonstrate the roles of probiotic strains in vivo and not simply their presence or absence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary 1. In recent decades there have been population declines of many UK bird species, which have become the focus of intense research and debate. Recently, as the populations of potential predators have increased there is concern that increased rates of predation may be contributing to the declines. In this review, we assess the methodologies behind the current published science on the impacts of predators on avian prey in the UK. 2. We identified suitable studies, classified these according to study design (experimental ⁄observational) and assessed the quantity and quality of the data upon which any variation in predation rates was inferred. We then explored whether the underlying study methodology had implications for study outcome. 3. We reviewed 32 published studies and found that typically observational studies comprehensively monitored significantly fewer predator species than experimental studies. Data for a difference in predator abundance from targeted (i.e. bespoke) census techniques were available for less than half of the 32 predator species studied. 4. The probability of a study detecting an impact on prey abundance was strongly, positively related to the quality and quantity of data upon which the gradient in predation rates was inferred. 5. The findings suggest that if a study is based on good quality abundance data for a range of predator species then it is more likely to detect an effect than if it relies on opportunistic data for a smaller number of predators. 6. We recommend that the findings from studies which use opportunistic data, for a limited number of predator species, should be treated with caution and that future studies employ bespoke census techniques to monitor predator abundance for an appropriate suite of predators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the linear equality-constrained least squares problem (LSE) of minimizing ${\|c - Gx\|}_2 $, subject to the constraint $Ex = p$. A preconditioned conjugate gradient method is applied to the Kuhn–Tucker equations associated with the LSE problem. We show that our method is well suited for structural optimization problems in reliability analysis and optimal design. Numerical tests are performed on an Alliant FX/8 multiprocessor and a Cray-X-MP using some practical structural analysis data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of an international intercomparison project, a set of single column models (SCMs) and cloud-resolving models (CRMs) are run under the weak temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistent implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison of the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. These large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.