958 resultados para gonadorelin agonist
Resumo:
How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modelled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide.
Resumo:
Myelodysplastic syndromes (MDS) represent a broad spectrum of diseases characterized by their clinical manifestation as one or more cytopenias, or a reduction in circulating blood cells. MDS is predominantly a disease of the elderly, with a median age in the UK of around 75. Approximately one third of MDS patients will develop secondary acute myeloid leukemia (sAML) that has a very poor prognosis. Unfortunately, most standard cytotoxic agents are often too toxic for older patients. This means there is a pressing unmet need for novel therapies that have fewer side effects to assist this vulnerable group. This challenge was tackled using bioinformatic analysis of available transcriptomic data to establish a gene-based signature of the development and progression of MDS. This signature was then used to identify novel therapeutic compounds via statistically-significant connectivity mapping. This approach suggested re-purposing an existing and widely-prescribed drug, bromocriptine as a novel potential therapy in these disease settings. This drug has shown selectivity for leukemic cells as well as synergy with current therapies.
Resumo:
Background: The oral cavity is a frontline barrier which is often exposed to physical trauma and noxious substances, leading to pro-inflammatory responses designed to be protective in nature. The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel activation in gingival and periodontal inflammation is currently limited. Gingival fibroblasts are the most abundant structural cell in periodontal tissues and we hypothesised that they may have a role in the inflammatory response associated with TRP channel activation. Objectives: The present study was designed to determine whether the TRPV1 agonist capsaicin could elicit a pro-inflammatory response in gingival fibroblasts in vitro by up-regulation of interleukin-8 (IL-8) production. Methods: Gingival fibroblasts were derived by explant culture from surgical tissues following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Following treatment of gingival fibroblasts with capsaicin, IL-8 levels were measured by ELISA. The potential cytotoxicity of capsaicin was determined by the MTT assay. Results: In gingival fibroblasts treated with the TRPV1 agonist capsaicin (10µM), IL-8 production was significantly increased compared with untreated control cells. Capsaicin was shown not to be toxic to gingival fibroblasts at the concentrations studied. Conclusion: The identification of factors that modulate pro-inflammatory cytokine production is important for our understanding of gingival and periodontal inflammation. This study reports for the first time that gingival fibroblasts respond to the TRPV1 agonist capsaicin by increased production of IL-8. Activation of TRPV1 on gingival fibroblasts could therefore have an important role in initiating and sustaining the inflammatory response associated with periodontal diseases
Resumo:
The TNF family ligand ectodysplasin A (EDA) and its receptor EDAR are required for proper development of skin appendages such as hair, teeth, and eccrine sweat glands. Loss of function mutations in the Eda gene cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition that can be ameliorated in mice and dogs by timely administration of recombinant EDA. In this study, several agonist anti-EDAR monoclonal antibodies were generated that cross-react with the extracellular domains of human, dog, rat, mouse, and chicken EDAR. Their half-life in adult mice was about 11 days. They induced tail hair and sweat gland formation when administered to newborn EDA-deficient Tabby mice, with an EC(50) of 0.1 to 0.7 mg/kg. Divalency was necessary and sufficient for this therapeutic activity. Only some antibodies were also agonists in an in vitro surrogate activity assay based on the activation of the apoptotic Fas pathway. Activity in this assay correlated with small dissociation constants. When administered in utero in mice or at birth in dogs, agonist antibodies reverted several ectodermal dysplasia features, including tooth morphology. These antibodies are therefore predicted to efficiently trigger EDAR signaling in many vertebrate species and will be particularly suited for long term treatments.
Resumo:
The characteristics of muscarinic acetylcholine receptor agonist-induced epileptiform bursting seen in immature rat piriform cortex slices in vitro were further investigated using intracellular recording, with particular focus on its postnatal age-dependence (P+14-P+30), pharmacology, site(s) of origin and the likely contribution of the muscarinic acetylcholine receptor agonist-induced post-stimulus slow afterdepolarization and gap junction functionality toward its generation. The muscarinic agonist, oxotremorine-M (10 microM), induced rhythmic bursting only in immature piriform cortex slices; however, paroxysmal depolarizing shift amplitude, burst duration and burst incidence were inversely related to postnatal age. No significant age-dependent changes in neuronal membrane properties or postsynaptic muscarinic responsiveness accounted for this decline. Burst incidence was higher when recorded in anterior and posterior regions of the immature piriform cortex. In adult and immature neurones, oxotremorine-M effects were abolished by M1-, but not M2-muscarinic acetylcholine receptor-selective antagonists. Rostrocaudal lesions, between piriform cortex layers I and II, or layer III and endopiriform nucleus in adult or immature slices did not influence oxotremorine-M effects; however, the slow afterdepolarization in adult (but not immature) lesioned slices was abolished. Gap junction blockers (carbenoxolone or octanol) disrupted muscarinic bursting and diminished the slow afterdepolarization in immature slices, suggesting that gap junction connectivity was important for bursting. Our data show that neural networks within layers II-III function as primary oscillatory circuits for burst initiation in immature rat piriform cortex during persistent muscarinic receptor activation. Furthermore, we propose that muscarinic slow afterdepolarization induction and gap junction communication could contribute towards the increased epileptiform susceptibility of this brain area.
Resumo:
We have shown that there is significant disparity in the expression of uncoupling proteins (UCP) 2 and 3 between modern-commercial and ancient-Meishan porcine genotypes, commercial pigs also have higher plasma triiodothyronine (T(3)) in on the first day of life. T(3) and the sympathetic nervous system are both known to regulate UCPs in rodents and humans; their role in regulating these proteins in the pig is unknown. This study examined whether thyroid hormone manipulation or administration of a selective beta3 adrenoceptor agonist (ZD) influenced plasma hormones, colonic temperature and UCP expression in adipose tissue of two breeds of pig. To mimic the differences observed in thyroid hormone status, piglets from Meishan and commercial litters were randomly assigned to control (1 ml/kg water), T(3) (10 mg/kg) (Meishan only), methimazole (a commonly used antithyroid drug) (50 mg/kg) (commercial only) or ZD (10 mg/kg) oral administration for the first 4 days of postnatal life. Adipose tissue UCP2/3 mRNA abundance was measured on day 4 using PCR. T(3) administration raised plasma T(3) concentrations and increased colonic temperature on day 4. UCP3 mRNA abundance was higher in Meishan, than commercial piglets (p = 0.042) and was downregulated following T(3) administration (p = 0.014). Irrespective of genotype, ZD increased UCP2 mRNA abundance (Meishan p = 0.05, commercial p = 0.03). Expression of neither UCP2 nor 3 was related to colonic temperature, regardless of treatment. In conclusion, we have demonstrated a dissociation between thyroid hormones and the sympathetic nervous system in the regulation of UCPs in porcine adipose tissue. We have also suggested that expression of adipose tissue UCP2 and 3 are not related to body temperature in piglets.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
The phytoestrogens genistein, daidzein and the daidzein metabolite equol have been shown previously to possess oestrogen agonist activity. However, following consumption of soya diets, they are found in the body not only as aglycones but also as metabolites conjugated at their 4'- and 7-hydroxyl groups with sulphate. This paper describes the effects of monosulphation on the oestrogen agonist properties of these three phytoestrogens in MCF-7 human breast cancer cells in terms of their relative ability to compete with [H-3]oestradiol for binding to oestrogen receptor (ER), to induce a stably transfected oestrogen-responsive reporter gene (ERE-CAT) and to stimulate cell growth. In no case did sulphation abolish activity. The 4'-sulphadon of genistein reduced oestrogen agonist activity to a small extent in whole-cell assays but increased the relative binding affinity to ER. The 7-sulphation of genistein, and also of equol, reduced oestrogen agonist activity substantially in all assays. By contrast, the position of monosulphation of daidzein acted in an opposing manner on oestrogen agonist activity. Sulphation at the 4'-position of daidzein resulted in a modest reduction in oestrogen agonist activity but sulphation of daidzein at the 7-position resulted in an increase in oestrogen agonist activity. Molecular modelling and docking studies suggested that the inverse effects of sulphation could be explained by the binding of daidzein into the ligand-binding domain of the ER in the opposite orientation compared with genistein and equol. This is the first report of sulphation enhancing activity of an isoflavone and inverse effects of sulphation between individual phytoestrogens.
Resumo:
In positron emission tomography and single photon emission computed tomography studies using D2 dopamine (DA) receptor radiotracers, a decrease in radiotracer binding potential (BP) is usually interpreted in terms of increased competition with synaptic DA. However, some data suggest that this signal may also reflect agonist (DA)-induced increases in D2 receptor (D2R) internalization, a process which would presumably also decrease the population of receptors available for binding to hydrophilic radioligands. To advance interpretation of alterations in D2 radiotracer BP, direct methods of assessment of D2R internalization are required. Here, we describe a confocal microscopy-based approach for the quantification of agonist-dependent receptor internalization. The method relies upon double-labeling of the receptors with antibodies directed against intracellular as well as extracellular epitopes. Following agonist stimulation, DA D2R internalization was quantified by differentiating, in optical cell sections, the signal due to the staining of the extracellular from intracellular epitopes of D2Rs. Receptor internalization was increased in the presence of the D2 agonists DA and bromocriptine, but not the D1 agonist SKF38393. Pretreatment with either the D2 antagonist sulpiride, or inhibitors of internalization (phenylarsine oxide and high molarity sucrose), blocked D2-agonist induced receptor internalization, thus validating this method in vitro. This approach therefore provides a direct and streamlined methodology for investigating the pharmacological and mechanistic aspects of D2R internalization, and should inform the interpretation of results from in vivo receptor imaging studies.
Resumo:
1 Mechanisms of inverse agonist action at the D-2(short) dopamine receptor have been examined. 2 Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [H-3]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. 3 Competition of inverse agonists versus [H-3] NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K-i values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K-coupled and K-uncoupled were statistically different for the set of compounds tested ( ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. 4 These observations were supported by simulations of these competition experiments according to the extended ternary complex model. 5 Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [S-35]GTPγ S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. 6 These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism.
Resumo:
Mechanisms of action of several atypical antipsychotic drugs have been examined at the D-2 dopamine receptor expressed in CHO cells. The drugs tested were found to exhibit inverse agonist activity at the D-2 dopamine receptor based on their effects to potentiate forskolin-stimulated cyclic AMP (cAMP) accumulation. Each of the antipsychotic drugs tested (clozapine, olanzapine, quetiapine and risperidone) increased cAMP accumulation to the same extent. The increase in cAMP was also similar to that seen with typical antipsychotic drugs. Inverse agonism at the D-2 dopamine receptor seems, therefore, to be a property common to all classes of antipsychotic drugs. The effect of sodium ions on the binding of the drugs to the receptor was also assessed. Each of the atypical antipsychotic drugs tested here bound with higher affinity in the absence of sodium ions. Previous studies have shown that some antipsychotic drugs are insensitive to sodium ions and some bind with higher affinity in the presence of sodium ions. Given that all of these antipsychotic drugs are inverse agonists, it may be concluded that this sodium ion sensitivity is unrelated to mechanisms of inverse agonism. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 g/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)- containing FcR chain. Conversely, thrombin only activated at high concentrations ( 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2 mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)– containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature. (Circ Res. 2004;94:1598-1605.)
Resumo:
In the present study we compared the affinity of various drugs for the high affinity "agonist-preferring" binding site of human recombinant 5-HT2A, 5-HT2B and 5-HT2C receptors stably expressed in monoclonal mammalian cell lines. To ensure that the "agonist-preferring" conformation of the receptor was preferentially labelled in competition binding experiments, saturation analysis was conducted using antagonist and agonist radiolabels at each receptor. Antagonist radiolabels ([H-3]-ketanserin for 5-HT2A receptor and [H-3]-mesulergine for 5-HT2B and 5-HT2C receptor) bound to a larger population of receptors in each preparation than the corresponding agonist radiolabel ([I-125]-DOI for 5-HT2A receptor binding and [H-3]-5-HT for 5-HT2B and 5-HT2C receptor binding). Competition experiments were subsequently conducted against appropriate concentrations of the agonist radiolabels bound to the "agonist-preferring" subset of receptors in each preparation. These studies confirmed that there are a number of highly selective antagonists available to investigate 5-HT2 receptor subtype function (for example, MDL 100907, RS-127445 and RS-102221 for 5-HT2A, 5-HT2B and 5-HT2C receptors respectively). There remains, however, a lack of highly selective agonists. (-)DOI is potent and moderately selective for 5-HT2A receptors, BW723C86 has poor selectivity for human 5-HT2B receptors, while Org 37684 and VER-3323 display some selectivity for the 5-HT2C receptor. We report for the first time in a single study, the selectivity of numerous serotonergic drugs for 5-HT2 receptors from the same species, in mammalian cell lines and using, exclusively, agonist radiolabels. The results indicate the importance of defining the selectivity of pharmacological tools, which may have been over-estimated in the past, and highlights the need to find more selective agonists to investigate 5-HT2 receptor pharmacology.