985 resultados para germinal center
Resumo:
In patients with rheumatoid arthritis the synovial membrane of the affected joint is infiltrated with lymphoid cells which may be arranged in structures resembling germinal centers. We have directly isolated such infiltrates to determine whether B-cell clones within them are selected and expanded in a process analogous to that which normally takes place in the germinal centers in secondary lymphoid organs. The data suggest that an antigen-driven process leads to the accumulation of B cells in the synovial membrane. The finding of identical sequences in consecutive sections suggests that under conditions of chronic stimulation, memory B cells may enter a stage of differentiation in which they proliferate without further accumulation of somatic mutations. Further we see intraclonal diversity which underlines the germinal center-like character of these infiltrates and demonstrates that a microenvironment is built up in this nonlymphoid tissue which supports antigen-dependent differentiation of B cells. This is the first demonstration, to our knowledge, of a germinal center-like reaction outside lymphoid tissue.
Resumo:
CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.
microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases.
To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis.
A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.
Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.
Resumo:
The advent of next-generation sequencing, now nearing a decade in age, has enabled, among other capabilities, measurement of genome-wide sequence features at unprecedented scale and resolution.
In this dissertation, I describe work to understand the genetic underpinnings of non-Hodgkin’s lymphoma through exploration of the epigenetics of its cell of origin, initial characterization and interpretation of driver mutations, and finally, a larger-scale, population-level study that incorporates mutation interpretation with clinical outcome.
In the first research chapter, I describe genomic characteristics of lymphomas through the lens of their cells of origin. Just as many other cancers, such as breast cancer or lung cancer, are categorized based on their cell of origin, lymphoma subtypes can be examined through the context of their normal B Cells of origin, Naïve, Germinal Center, and post-Germinal Center. By applying integrative analysis of the epigenetics of normal B Cells of origin through chromatin-immunoprecipitation sequencing, we find that differences in normal B Cell subtypes are reflected in the mutational landscapes of the cancers that arise from them, namely Mantle Cell, Burkitt, and Diffuse Large B-Cell Lymphoma.
In the next research chapter, I describe our first endeavor into understanding the genetic heterogeneity of Diffuse Large B Cell Lymphoma, the most common form of non-Hodgkin’s lymphoma, which affects 100,000 patients in the world. Through whole-genome sequencing of 1 case as well as whole-exome sequencing of 94 cases, we characterize the most recurrent genetic features of DLBCL and lay the groundwork for a larger study.
In the last research chapter, I describe work to characterize and interpret the whole exomes of 1001 cases of DLBCL in the largest single-cancer study to date. This highly-powered study enabled sub-gene, gene-level, and gene-network level understanding of driver mutations within DLBCL. Moreover, matched genomic and clinical data enabled the connection of these driver mutations to clinical features such as treatment response or overall survival. As sequencing costs continue to drop, whole-exome sequencing will become a routine clinical assay, and another diagnostic dimension in addition to existing methods such as histology. However, to unlock the full utility of sequencing data, we must be able to interpret it. This study undertakes a first step in developing the understanding necessary to uncover the genomic signals of DLBCL hidden within its exomes. However, beyond the scope of this one disease, the experimental and analytical methods can be readily applied to other cancer sequencing studies.
Thus, this dissertation leverages next-generation sequencing analysis to understand the genetic underpinnings of lymphoma, both by examining its normal cells of origin as well as through a large-scale study to sensitively identify recurrently mutated genes and their relationship to clinical outcome.
Resumo:
The pathogenesis of diffuse large B-cell lymphoma (DLBCL) remains partially unknown. The analysis of the B-cell receptor of the malignant cells could contribute to a better understanding of the DLBCL biology. We studied the molecular features of the immunoglobulin heavy chain (IGH) rearrangements in 165 patients diagnosed with DLBCL not otherwise specified. Clonal IGH rearrangements were amplified according to the BIOMED-2 protocol and PCR products were sequenced directly. We also analyzed the criteria for stereotyped patterns in all complete IGHV-IGHD-IGHJ (V-D-J) sequences. Complete V-D-J rearrangements were identified in 130 of 165 patients. Most cases (89%) were highly mutated, but 12 sequences were truly unmutated or minimally mutated. Three genes, IGHV4-34, IGHV3-23, and IGHV4-39, accounted for one third of the whole cohort, including an overrepresentation of IGHV4-34 (15.5% overall). Interestingly, all IGHV4-34 rearrangements and all unmutated sequences belonged to the nongerminal center B-cell-like (non-GCB) subtype. Overall, we found three cases following the current criteria for stereotyped heavy chain VH CDR3 sequences, two of them belonging to subsets previously described in CLL. IGHV gene repertoire is remarkably biased, implying an antigen-driven origin in DLBCL. The particular features in the sequence of the immunoglobulins suggest the existence of particular subgroups within the non-GCB subtype.
Resumo:
BACKGROUND AND OBJECTIVES: Analysis of IgH rearrangements in B-cell malignancies has provided clinical researchers with a wide range of information during the last few years. However, only a few studies have contributed to the characterization of these features in multiple myeloma (MM), and they have been focused on the analysis of the expressed IgH allele only. Comparison between the expressed and the non-functional IgH alleles allows further characterizion of the selection processes to which pre-myeloma cells are submitted. DESIGN AND METHODS: We analyzed a cohort of 84 untreated MM patients in order to characterize their functional VDJH and non-functional DJH rearrangements. The pattern of mutations and gene segment usage for both types of rearrangements was analyzed by polymerase chain reaction and sequencing. RESULTS: VH3 and VH1 family members were over- and under-represented, respectively. VH3-30 and VH3-15 segments were the most frequently used, whereas VH4-34 was found only in non-functional or heavily mutated VDJH rearrangements. DH2 and DH3 family members were over-represented in both VDJH and DJH repertoires, while the DH1 family was under-represented only in the productive VDJH rearrangements. Finally, DH3-22 and DH2-21 gene segments were found to be over-represented in the functional repertoire while segments commonly used by less mature B-cell malignancies, such as DH6-19 or DH3-3, were under-represented. INTERPRETATION AND CONCLUSIONS: Data reported here help to identify the clonogenic MM cell as a post-germinal center B cell that has undergone selection processes during the germinal center reaction.
Resumo:
A large fraction of organ transplant recipients develop anti-donor antibodies (DSA), with accelerated graft loss and increased mortality. We tested the hypothesis that erythropoietin (EPO) reduces DSA formation by inhibiting T follicular helper (TFH) cells. We measured DSA levels, splenic TFH, TFR cells, germinal center (GC), and class switched B cells, in murine models of allogeneic sensitization, allogeneic transplantation and in parent-to-F1 models of graft versus host disease (GVHD). We quantified the same cell subsets and specific antibodies, upon EPO or vehicle treatment, in wild type mice and animals lacking EPO receptor selectively on T or B cells, immunized with T-independent or T-dependent stimuli. In vitro, we tested the EPO effect on TFH induction. We isolated TFH and TFR cells to perform in vitro assay and clarify their role. EPO reduced DSA levels, GC, class switched B cells, and increased the TFR/TFH ratio in the heart transplanted mice and in two GVHD models. EPO did also reduce TFH and GC B cells in SRBC-immunized mice, while had no effect in TNP-AECM-FICOLL-immunized animals, indicating that EPO inhibits GC B cells by targeting TFH cells. EPO effects were absent in T cells EPOR conditional KO mice, confirming that EPO affects TFH in vivo through EPOR. In vitro, EPO affected TFH induction through an EPO-EPOR-STAT5-dependent pathway. Suppression assay demonstrated that the reduction of IgG antibodies was dependent on TFH cells, sustaining the central role of the subset in this EPO-mediated mechanism. In conclusion, EPO prevents DSA formation in mice through a direct suppression of TFH. Development of DSA is associated with high risk of graft rejection, giving our data a strong rationale for studies testing the hypothesis that EPO administration prevents their formation in organ transplant recipients. Our findings provide a foundation for testing EPO as a treatment of antibody mediated disease processes.
Resumo:
During T cell dependent immune responses, the acquisition of B cell memory from naïve cells takes place within a highly specialized microenvironment: The germinal centers (GC) of the secondary lymphoid organs. The GC reaction is a tightly regulated process in which the balance between survival and death is mediated by signals transduced through ligation of critical costimulatory molecules such as CD40 and CD154. While most cognate receptor-ligand interactions occur between T-cells and antigen (Ag)-presenting cells (APC) such as B-cells, evidence of homotypic B cell interactions has emerged. Despite the progress in our understanding of the reaction, several questions remain: (1) What determines the concomitant expression of CD40 and its ligand CD154 by GC B-cells? (2) Which molecules are responsible for inducing GC-B cell survival? and (3) how can cognate T-cell help be recruited into the organized structure of GCs? ^ Because the expression of costimulatory and survival molecules is predominant at distinct Ag-dependent maturation stages, we hypothesized the existence of stage specific gene expression responsible for the regulation of the GC reaction. Our studies reveal several novel genes whose expression may be critical for the GC reaction. The discovery of AKNA reveals the mechanism behind homotypic B cell CD40 and CD40 ligand interactions, which can explain the costimulatory signaling to GC B cells in the absence of T cells. Additionally, the identification of the pro-survival molecule PRELI may provide a novel mechanism for the survival of Ag-selected B cells. We propose that PRELI and its phylogenic homologues represent a novel family of proteins responsible for the protection of cells against caspase-independent apoptosis. Furthermore, we show that GC B cells actively participate in the recruitment of T cells through the secretion of CC and CxC chemokines, thus supporting their mutual involvement in cognate interactions. ^
Resumo:
To describe maternal and neonatal outcomes in pregnant women undergoing hemodialysis in a referral center in Brazilian Southeast side. Retrospective and descriptive study, with chart review of all pregnancies undergoing hemodialysis that were followed-up at an outpatient clinic of high- risk prenatal care in Southeast Brazil. Among the 16 women identified, 2 were excluded due to follow-up loss. In 14 women described, hypertension was the most frequent cause of chronic renal failure (half of cases). The majority (71.4%) had performed hemodialysis treatment for more than one year and all of them underwent 5 to 6 hemodialysis sessions per week. Eleven participants had chronic hypertension, 1 of which was also diabetic, and 6 of them were smokers. Regarding pregnancy complications, 1 of the hypertensive women developed malignant hypertension (with fetal growth restriction and preterm delivery at 29 weeks), 2 had acute pulmonary edema and 2 had abruption placenta. The mode of delivery was cesarean section in 9 women (64.3%). All neonates had Apgar score at five minutes above 7. To improve perinatal and maternal outcomes of women undergoing hemodialysis, it is important to ensure multidisciplinary approach in referral center, strict control of serum urea, hemoglobin and maternal blood pressure, as well as close monitoring of fetal well-being and maternal morbidities. Another important strategy is suitable guidance for contraception in these women.
Resumo:
To assess the sociodemographic profile and gynecologic and obstetric characteristics of women referred to a public reference center in Campinas, Brazil, for in vitro fertilization (IVF). Women referred between April 1, 2008, and October 31, 2009, were eligible for inclusion in a cross-sectional study. Participants were interviewed about sociodemographic characteristics, obstetric and gynecologic history, and etiologic factors resulting in the referral. Preliminary clinical examinations performed elsewhere were evaluated. A total of 176 women were included, of whom 129 (73.3%) presented with tubal factor infertility. Tubal ligation had been performed in 66 (37.5%) women. Overall, 121 (68.8%) women were aged 30 years old or less, 110 (62.5%) had received more than 8 years of schooling, 123 (69.6%) had had infertility for up to 5 years, and 99 (56.3%) did not have any children. Moreover, 25 (14.2%) women had endometriosis and 25 (14.2%) had a male factor issue. A previous ectopic pregnancy was reported for 20 (11.4%) women and pelvic inflammatory disease for 49 (27.8%). Tubal factor infertility was the most common indication for IVF. Preventive measures are required, in addition to policies that ensure access to high-complexity treatments in the public sector.
Resumo:
The objective of this study was to estimate the regressions calibration for the dietary data that were measured using the quantitative food frequency questionnaire (QFFQ) in the Natural History of HPV Infection in Men: the HIM Study in Brazil. A sample of 98 individuals from the HIM study answered one QFFQ and three 24-hour recalls (24HR) at interviews. The calibration was performed using linear regression analysis in which the 24HR was the dependent variable and the QFFQ was the independent variable. Age, body mass index, physical activity, income and schooling were used as adjustment variables in the models. The geometric means between the 24HR and the calibration-corrected QFFQ were statistically equal. The dispersion graphs between the instruments demonstrate increased correlation after making the correction, although there is greater dispersion of the points with worse explanatory power of the models. Identification of the regressions calibration for the dietary data of the HIM study will make it possible to estimate the effect of the diet on HPV infection, corrected for the measurement error of the QFFQ.
Resumo:
Chemical reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam, fac-[Ru(NO)Cl(2)(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl center dot H(2)O ((1-carboxypropyl) cyclam = 3-(1,4,8,11-tetraazacyclotetradecan-1-yl) propionic acid)), (I) are described. Chloride ligands do not undergo aquation reactions (at 25 degrees C, pH 3). The rate of nitric oxide (NO) dissociation (k(obs-NO)) upon reduction of I is 2.8 s(-1) at 25 +/- 1 degrees C (in 0.5 mol L(-1) HCl), which is close to the highest value found for related complexes. The uncoordinated carboxyl of I has a pK(a) of similar to 3.3, which is close to that of the carboxyl of the non coordinated (1-carboxypropyl) cyclam (pK(a) = 3.4). Two additional pK(a) values were found for I at similar to 8.0 and similar to 11.5. Upon electrochemical reduction or under irradiation with light (lambda(irr) = 350 or 520 nm; pH 7.4), I releases NO in aqueous solution. The cyclam ring N bound to the carboxypropyl group is not coordinated, resulting in a fac configuration that affects the properties and chemical reactivities of I, especially as NO donor, compared with analogous trans complexes. Among the computational models tested, the B3LYP/ECP28MDF, cc-pVDZ resulted in smaller errors for the geometry of I. The computational data helped clarify the experimental acid-base equilibria and indicated the most favourable site for the second deprotonation, which follows that of the carboxyl group. Furthermore, it showed that by changing the pH it is possible to modulate the electron density of I with deprotonation. The calculated NO bond length and the Ru/NO charge ratio indicated that the predominant canonical structure is [Ru(III)NO], but the Ru-NO bond angles and bond index (b.i.) values were less clear; the angles suggested that [Ru(II)NO(+)] could contribute to the electronic structure of I and b.i. values indicated a contribution from [Ru(IV)NO(-)]. Considering that some experimental data are consistent with a [Ru(II)NO(+)] description, while others are in agreement with [Ru(III)NO], the best description for I would be a linear combination of the three canonical forms, with a higher weight for [Ru(II)NO(+)] and [Ru(III)NO].
Resumo:
Background: The rapid progress currently being made in genomic science has created interest in potential clinical applications; however, formal translational research has been limited thus far. Studies of population genetics have demonstrated substantial variation in allele frequencies and haplotype structure at loci of medical relevance and the genetic background of patient cohorts may often be complex. Methods and Findings: To describe the heterogeneity in an unselected clinical sample we used the Affymetrix 6.0 gene array chip to genotype self-identified European Americans (N = 326), African Americans (N = 324) and Hispanics (N = 327) from the medical practice of Mount Sinai Medical Center in Manhattan, NY. Additional data from US minority groups and Brazil were used for external comparison. Substantial variation in ancestral origin was observed for both African Americans and Hispanics; data from the latter group overlapped with both Mexican Americans and Brazilians in the external data sets. A pooled analysis of the African Americans and Hispanics from NY demonstrated a broad continuum of ancestral origin making classification by race/ethnicity uninformative. Selected loci harboring variants associated with medical traits and drug response confirmed substantial within-and between-group heterogeneity. Conclusion: As a consequence of these complementary levels of heterogeneity group labels offered no guidance at the individual level. These findings demonstrate the complexity involved in clinical translation of the results from genome-wide association studies and suggest that in the genomic era conventional racial/ethnic labels are of little value.
Resumo:
Thermodynamics, equilibrium structure, and dynamics of glass-forming liquids Ca(NO(3))(2)center dot nH(2)O, n=4, 6, and 8, have been investigated by molecular dynamics (MD) simulations. A polarizable model was considered for H(2)O and NO(3)- on the basis of previous fluctuating charge models for pure water and the molten salt 2Ca(NO(3))(2)center dot 3KNO(3). Similar thermodynamic properties have been obtained with nonpolarizable and polarizable models. The glass transition temperature, T(g), estimated from MD simulations was dependent on polarization, in particular the dependence of T(g) with electrolyte concentration. Significant polarization effects on equilibrium structure were observed in cation-cation, cation-anion, and water-water structures. Polarization increases the diffusion coefficient of H(2)O, but does not change significantly the diffusion coefficients of ions. Viscosity decreases upon inclusion of polarization, but the conductivity calculated with the polarizable model is smaller than the nonpolarizable model because polarization enhances anion-cation interactions.
Resumo:
Molecular dynamics simulations of the glass-forming liquid 2Ca(NO(3))(2)center dot 3KNO(3) (CKN) were performed from high temperature liquid states down to low temperature glassy states at six different pressures from 10(-4) to 5.0 GPa. The temperature dependence of the structural relaxation time indicates that the fragility of liquid CKN changes with pressure. In line with recent proposal [Scopigno , Science 302, 849 (2003)], the change on liquid fragility is followed by a proportional change of the nonergodicity factor of the corresponding glass at low temperature. (c) 2008 American Institute of Physics.
Resumo:
Hydrous niobium oxide (Nb(2)O(5)center dot nH(2)O) nanoparticles had been Successfully prepared by water-in-oil microemulsion. They were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTG), Fourier transform infrared spectroscopy (FTIR), BET surface area measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the nanoparticle was exactly Nb(2)O(5)center dot nH(2)O with spherical shape. Their BET surface area was 60 m(2) g(-1). XRD results showed that Nb(2)O(5)center dot nH(2)O nanoparticles with crystallite size in nanometer scale were formed. The crystallinity and crystallity size increased with increasing annealing temperature. TT-phase of Nb(2)O(5) was obtained when the sample is annealed at 550 degrees C. (C) 2009 Elsevier B.V. All rights reserved.