991 resultados para geosciences,
Resumo:
A typical residual clayey soil originating from basalt in southern Brazil has been analyzed in order to assess the influence of wetting-induced deformation and microstructural features on the collapse behavior. Single and double oedometer tests were undertaken on a soil profile to 9 m depth. The results indicated collapsible behaviour at all profile depths. The influence of pre-consolidation stress and pedogenetic factors in the variability of the physical characteristics of the soil and in the magnitude of the collapse was noted. The collapse coefficient has been shown to be related to the both the microaggregate plasma and the varying nature of the pores and their interconnectivity.
Resumo:
The groundwater recharge and water fluxes of the Guarani Aquifer System in the state of Sao Paulo in Brazil were assessed through a numeric model. The study area (6,748 km(2)) comprises Jacar,-Gua double dagger A(0) and Jacar,-Pepira River watersheds, tributaries of the Tiet River in the central region of the state. GIS based tools were used in the storage, processing and analysis of data. Main hydrologic phenomena were selected, leading to a groundwater conceptual model, taking into account the significant outcrops occurring in the study area. Six recharge zones were related to the geologic formation and structures of the semi-confined and phreatic aquifer. The model was calibrated against the baseflows and static water levels of the wells. The results emphasize the strong interaction of groundwater flows between watersheds and the groundwater inflow into the rivers. It has been concluded that lateral groundwater exchanges between basins, the deep discharges to the regional system, and well exploitation were not significant aquifer outflows when compared to the aquifer recharge. The results have shown that the inflows from the river into the aquifer are significant and have the utmost importance since the aquifer is potentially more vulnerable in these places.
Resumo:
This paper presents a proposal for a Quality Management System for a generic GNSS Surveying Company as an alternative for management and service quality improvements. As a result of the increased demand for GNSS measurements, a large number of new or restructured companies were established to operate in that market. Considering that GNSS surveying is a new process, some changes must be performed in order to accommodate the old surveying techniques and the old fashioned management to the new reality. This requires a new management model that must be based on a well-described procedure sequence aiming at the Total Management Quality for the company. The proposed Quality Management System was based on the requirements of the Quality System ISO 9000:2000, applied to the whole company, focusing on the productive process of GNSS surveying work.
Resumo:
Collapsible soils are usually nonsaturated, low density, and metastable-structured soils that are known to exhibit a volume reduction following an episode of moisture increase or suction reduction. This paper describes the collapsible behavior of clayey sand based on controlled soil suction tests carried out on undisturbed samples from the city of Pereira Barreto, in the State of Sao Paulo, Brazil. Foundation settlements due to soil collapse are common in this region and occurred during the filling of the reservoir of the Tres Irmaos Dam, which induced the elevation of the groundwater table in different parts of Pereira Barreto. This paper shows that collapse strains depend on the stress and soil suction acting in the sample and that saturation is not necessary for a collapse to occur. The influence of soil suction, gradual wetting, and the wetting and drying cycle on the collapsible behavior of the soil is also shown and discussed.
Resumo:
A slope stability model is derived for an infinite slope subjected to unsaturated infiltration flow above a phreatic surface. Closed form steady state solutions are derived for the matric suction and degree of saturation profiles. Soil unit weight, consistent with the degree of saturation profile, is also directly calculated and introduced into the analyzes, resulting in closed-form solutions for typical soil parameters and an infinite series solution for arbitrary soil parameters. The solutions are coupled with the infinite slope stability equations to establish a fully realized safety factor function. In general, consideration of soil suction results in higher factor of safety. The increase in shear strength due to the inclusion of soil suction is analogous to making an addition to the cohesion, which, of course, increases the factor of safety against sliding. However, for cohesive soils, the results show lower safety factors for slip surfaces approaching the phreatic surface compared to those produced by common safety factor calculations. The lower factor of safety is due to the increased soil unit weight considered in the matric suction model but not usually accounted for in practice wherein the soil is treated as dry above the phreatic surface. The developed model is verified with a published case study, correctly predicting stability under dry conditions and correctly predicting failure for a particular storm.
Resumo:
This note addresses the relation between the differential equation of motion and Darcy`s law. It is shown that, in different flow conditions, three versions of Darcy`s law can be rigorously derived from the equation of motion.
Resumo:
On February 6, 1994, a large debris flow developed because of intense rains in a 800-m-high mountain range called Serra do Cubatao, the local name for the Serra do Mar, located along the coast of the state of Sao Paulo, Brazil. It affected the Presidente Bernardes Refinery, owned by Petrobras, in Cubatao. The damages amounted to about US $40 million because of the muck cleaning, repairs, and 3-week interruption of the operations. This prompted Petrobras to conduct studies, carried out by the authors, to develop protection works, which were done at a cost of approximately US $12 million. The paper describes the studies conducted on debris flow mechanics. A new criteria to define rainfall intensities that trigger debris flows is presented, as well as a correlation of slipped area with soil porosity and rain intensity. Also presented are (a) an actual grain size distribution of a deposited material, determined by laboratory and a large-scale field test, and (b) the size distribution of large boulders along the river bed. Based on theory, empirical experience and back-analysis of the events, the main parameters as the front velocity, the peak discharge and the volume of the transported sediments were determined in a rational basis for the design of the protection works. Finally, the paper describes the set of the protection works built, emphasizing their concept and function. They also included some low-cost innovative works.
Resumo:
It is well established, the importance of the measurement of soil suction for the assessment of mechanical and hydraulic behavior of unsaturated soils. Among the methods to obtain the soil suction, the tensiometer is one of the most convenient and reliable. However conventional tensiometer has a limitation related to the maximum suction it is capable of measure. This limitation was overcome by Ridley and Burland (1993), with the development of a high capacity tensiometer, which is capable of measure suction well above 100 kPa. The equipment has a quick response time, allowing the determination of suction in minutes. This paper presents a study about the factors that affect the equilibrium time for high capacity tensiometers in the laboratory. Soil specimens were prepared at three different conditions, creating different soil structures. In addition to that an investigation about the characteristic of the interface that is required between the soil sample and the porous ceramic of the tensiometer was carried out; showing the role of the paste on the technique. The results also suggested that it is possible to infer the hydraulic conductivity function using the equilibrium curve obtained during the measurement of the soil suction using the high capacity tensiometer.
Resumo:
The present analysis takes into account the acceleration term in the differential equation of motion to obtain exact dynamic solutions concerning the groundwater flow towards a well in a confined aquifer. The results show that the error contained in the traditional quasi-static solution is very small in typical situations.
Resumo:
This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.
Resumo:
Inorganic elements analyses of Carapicuiba lake reveal that As, Cr, Pb and Mn are above the recommended drinking water standards. The mean total concentrations of toxic elements in surface water decrease in the order Mn > Cr > Pb > As. At elevated concentrations, toxic elements like Cr can accumulate in soils and enter the food chain, leading to serious health hazards and threatening the long-term sustainability of the local ecosystem. Absorbing materials has often been used to improve water quality. In this investigation three types of material were studied: the natural zeolite (mordenite); synthetic goethite and the powdered block carbon modified. The adsorption of Pb(2+) and Mn(2+) onto natural zeolite as a function of their concentrations was studied at 24 degrees C by varying the metal concentration from 100 to 400 mg L(-1) while keeping all other parameters constant. The low-cost zeolites removed Pb from water without any pretreatment at pH values <6. The maximum adsorption attained was as follows: Pb(2+) 78.7% and Mn(2+) 19.6%. The modified powdered block carbon effectively removed As(V) and Cr(VI) while goethite removed more chromate than arsenate in the pH range 5-6. Results of this study will be used to evaluate the application these materials for the treatment of the Carapicuiba lake`s water.
Resumo:
The knowledge of soil water storage (SWS) of soil profiles is crucial for the adoption of vegetation restoration practices. With the aim of identifying representative sites to obtain the mean SWS of a watershed, a time stability analysis of neutron probe evaluations of SWS was performed by the means of relative differences and Spearman rank correlation coefficients. At the same time, the effects of different neutron probe calibration procedures were explored on time stability analysis. mean SWS estimation. and preservation of the spatial variability of SWS. The selected watershed, with deep gullies and undulating slopes which cover an area of 20 ha, is characterized by an Ust-Sandiic Entisol and an Aeolian sandy soil. The dominant vegetation species are bunge needlegrass (Stipa bungeana Trim) and korshinsk peashrub (Carugano Korshinskii kom.). From June 11, 2007 to July 23,2008, SWS of the top1 m soil layer was evaluated for 20 dates, based on neutron probe data of 12 sampling sites. Three calibration procedures were employed: type 1, most complete, with each site having its own linear calibration equation (TrE); type II. with TrE equations extended over the whole field: and type III, with one single linear calibration curve for the whole field (UnE) and also correcting its intercept based on site specific relative difference analysis (RdE) and on linear fitting of data (RcE), both maintaining the same slope. A strong time stability of SWS estimated by TrE equations was identified. Soil particle size and soil organic matter content were recognized as the influencing factors for spatial variability of SWS. Land use influenced neither the spatial variability nor the time stability of SWS. Time stability analysis identified one site to represent the mean SWS of the whole watershed with mean absolute percentage errors of less than 10%, therefore. this site can be used as a predictor for the mean SWS of the watershed. Some equations of type II were found to be unsatisfactory to yield reliable mean SWS values or in preserving the associated soil spatial variability. Hence, it is recommended to be cautious in extending calibration equations to other sites since they might not consider the field variability. For the equations with corrected intercept (type III), which consider the spatial variability of calibration in a different way in relation to TrE, it was found that they can yield satisfactory means and standard deviation of SWS, except for the RdE equations, which largely leveled off the SWS values in the watershed. Correlation analysis showed that the neutron probe calibration was linked to soil bulk density and to organic matter content. Therefore, spatial variability of soil properties should be taken into account during the process of neutron probe calibration. This study provides useful information on the mean SWS observation with a time stable site and on distinct neutron probe calibration procedures, and it should be extended to soil water management studies with neutron probes, e.g., the process of vegetation restoration in wider area and soil types of the Loess Plateau in China. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Time-domain reflectometry (TDR) is an important technique to obtain series of soil water content measurements in the field. Diode-segmented probes represent an improvement in TDR applicability, allowing measurements of the soil water content profile with a single probe. In this paper we explore an extensive soil water content dataset obtained by tensiometry and TDR from internal drainage experiments in two consecutive years in a tropical soil in Brazil. Comparisons between the variation patterns of the water content estimated by both methods exhibited evidences of deterioration of the TDR system during this two year period at field conditions. The results showed consistency in the variation pattern for the tensiometry data, whereas TDR estimates were inconsistent, with sensitivity decreasing over time. This suggests that difficulties may arise for the long-term use of this TDR system under tropical field conditions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The role of dominant bacterial groups in the plant rhizosphere, e.g., those belonging to the phyla Acidobacteria and Verrucomicrobia, has, so far, not been elucidated, and this is mainly due to the lack of culturable representatives. This study aimed to isolate hitherto-uncultured bacteria from the potato rhizosphere by a combination of cultivation approaches. An agar medium low in carbon availability (oligotrophic agar medium) and either amended with potato root exudates or catalase or left unamended was used with the aim to improve the culturability of bacteria from the potato rhizosphere. The colony forming unit numbers based on colonies and microcolonies were compared with microscopically determined fluorescence-stained cell numbers. Taxonomical diversity of the colonies was compared with that of library clones made from rhizosphere DNA, on the basis of 16S rRNA gene comparisons. The oligotrophic media amended or not with catalase or rhizosphere extract recovered up to 33.6% of the total bacterial numbers, at least seven times more than the recovery observed on R2A. Four hitherto-uncultured Verrucomicrobia subdivision 1 representatives were recovered on agar, but representatives of this group were not found in the clone library. The use of oligotrophic medium and its modifications enabled the growth of colony numbers, exceeding those on classical agar media. Also, it led to the isolation of hitherto-uncultured bacteria from the potato rhizosphere. Further improvement in cultivation will certainly result in the recovery of other as-yet-unexplored bacteria from the rhizosphere, making these groups accessible for further investigation, e.g., with respect to their possible interactions with plants.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.