993 resultados para geophysical survey


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research is part of a survey for the detection of the hydraulic and geotechnical conditions of river embankments funded by the Reno River Basin Regional Technical Service of the Region Emilia-Romagna. The hydraulic safety of the Reno River, one of the main rivers in North-Eastern Italy, is indeed of primary importance to the Emilia-Romagna regional administration. The large longitudinal extent of the banks (several hundreds of kilometres) has placed great interest in non-destructive geophysical methods, which, compared to other methods such as drilling, allow for the faster and often less expensive acquisition of high-resolution data. The present work aims to experience the Ground Penetrating Radar (GPR) for the detection of local non-homogeneities (mainly stratigraphic contacts, cavities and conduits) inside the Reno River and its tributaries embankments, taking into account supplementary data collected with traditional destructive tests (boreholes, cone penetration tests etc.). A comparison with non-destructive methodologies likewise electric resistivity tomography (ERT), Multi-channels Analysis of Surface Waves (MASW), FDEM induction, was also carried out in order to verify the usability of GPR and to provide integration of various geophysical methods in the process of regular maintenance and check of the embankments condition. The first part of this thesis is dedicated to the explanation of the state of art concerning the geographic, geomorphologic and geotechnical characteristics of Reno River and its tributaries embankments, as well as the description of some geophysical applications provided on embankments belonging to European and North-American Rivers, which were used as bibliographic basis for this thesis realisation. The second part is an overview of the geophysical methods that were employed for this research, (with a particular attention to the GPR), reporting also their theoretical basis and a deepening of some techniques of the geophysical data analysis and representation, when applied to river embankments. The successive chapters, following the main scope of this research that is to highlight advantages and drawbacks in the use of Ground Penetrating Radar applied to Reno River and its tributaries embankments, show the results obtained analyzing different cases that could yield the formation of weakness zones, which successively lead to the embankment failure. As advantages, a considerable velocity of acquisition and a spatial resolution of the obtained data, incomparable with respect to other methodologies, were recorded. With regard to the drawbacks, some factors, related to the attenuation losses of wave propagation, due to different content in clay, silt, and sand, as well as surface effects have significantly limited the correlation between GPR profiles and geotechnical information and therefore compromised the embankment safety assessment. Recapitulating, the Ground Penetrating Radar could represent a suitable tool for checking up river dike conditions, but its use has significantly limited by geometric and geotechnical characteristics of the Reno River and its tributaries levees. As a matter of facts, only the shallower part of the embankment was investigate, achieving also information just related to changes in electrical properties, without any numerical measurement. Furthermore, GPR application is ineffective for a preliminary assessment of embankment safety conditions, while for detailed campaigns at shallow depth, which aims to achieve immediate results with optimal precision, its usage is totally recommended. The cases where multidisciplinary approach was tested, reveal an optimal interconnection of the various geophysical methodologies employed, producing qualitative results concerning the preliminary phase (FDEM), assuring quantitative and high confidential description of the subsoil (ERT) and finally, providing fast and highly detailed analysis (GPR). Trying to furnish some recommendations for future researches, the simultaneous exploitation of many geophysical devices to assess safety conditions of river embankments is absolutely suggested, especially to face reliable flood event, when the entire extension of the embankments themselves must be investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We noninvasively detected the characteristics and location of a regional fault in an area of poor bedrock exposure complicated by karst weathering features in the subsurface. Because this regional fault is associated with sinkhole formation, its location is important for hazard avoidance. The bedrock lithologies on either side of the fault trace are similar; hence, we chose an approach that capitalized on the complementary strengths of very low frequency (VLF) electromagnetic, resistivity, and gravity methods. VLF proved most useful as a first-order reconnaissance tool, allowing us to define a narrow target area for further geophysical exploration. Fault-related epikarst was delineated using resistivity. Ultimately, a high-resolution gravity survey and subsequent inverse modeling using the results of the resistivity survey helped to further constrain the location and approximate orientation of the fault. The combined results indicated that the location of the fault trace needed to be adjusted 53 m south of the current published location and was consistent with a north-dipping thrust fault. Additionally, a gravity low south of the fault trace agreed with the location of conductive material from the resistivity and VLF surveys. We interpreted these anomalies to represent enhanced epikarst in the fault footwall. We clearly found that a staged approach involving a progression of methods beginning with a reconnaissance VLF survey, followed by high-resolution gravity and electrical resistivity surveys, can be used to characterize a fault and fault-related karst in an area of poor bedrock surface exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kara scientific expedition of 1945, using the fishing trawler M. Gorkiy and survey vessel Osetr, took sediment samples in the Kara Sea in addition to other oceanographic work. The investigations of sediments composition was compared with biological and hydrological data obtained in the same areas. The sediments sampled were subjected to mechanical, mineralogical, chemical and faunistic analyses. During this survey iron-manganese concretions were recovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early part of 1899 the U.S.S. Nero was dispatched from San Francisco to survey a route for a telegraph cable between the United States, the Philippines Islands and Japan. Concurent with meteorological and oceanographic observations, closely spaced samples of bottom material were systematically sampled. They have been carefully accounted and described by James M. Flint in this volume. On the way, numerous submarine peaks were discovered. During this voyage U.S.S. Nero also took a sounding in the area of the Challenger Deep, recording a depth of 5269 fathoms (9636 m), the greatest depth recorded at that time. Carefull study of the deep-sea deposits have also revealed a number of manganese nodules and encrustations as well as micronodules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Universidad Politécnica of Madrid (UPM) includes schools and faculties that were for engineering degrees, architecture and computer science, that are now in a quick EEES Bolonia Plan metamorphosis getting into degrees, masters and doctorate structures. They are focused towards action in machines, constructions, enterprises, that are subjected to machines, human and environment created risks. These are present in actions such as use loads, wind, snow, waves, flows, earthquakes, forces and effects in machines, vehicles behavior, chemical effects, and other environmental factors including effects of crops, cattle and beasts, forests, and varied essential economic and social disturbances. Emphasis is for authors in this session more about risks of natural origin, such as for hail, winds, snow or waves that are not exactly known a priori, but that are often considered with statistical expected distributions giving extreme values for convenient return periods. These distributions are known from measures in time, statistic of extremes and models about hazard scenarios and about responses of man made constructions or devices. In each engineering field theories were built about hazards scenarios and how to cover for important risks. Engineers must get that the systems they handle, such as vehicles, machines, firms or agro lands or forests, obtain production with enough safety for persons and with decent economic results in spite of risks. For that risks must be considered in planning, in realization and in operation, and safety margins must be taken but at a reasonable cost. That is a small level of risks will often remain, due to limitations in costs or because of due to strange hazards, and maybe they will be covered by insurance in cases such as in transport with cars, ships or aircrafts, in agro for hail, or for fire in houses or in forests. These and other decisions about quality, security for men or about business financial risks are sometimes considered with Decision Theories models, using often tools from Statistics or operational Research. The authors have done and are following field surveys about risk consideration in the careers in UPM, making deep analysis of curricula taking into account the new structures of degrees in the EEES Bolonia Plan, and they have considered the risk structures offered by diverse schools of Decision theories. That gives an aspect of the needs and uses, and recommendations about improving in the teaching about risk, that may include special subjects especially oriented for each career, school or faculty, so as to be recommended to be included into the curricula, including an elaboration and presentation format using a multi-criteria decision model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. Geophysical, ground deformation and geochemical monitoring have been carried out to detect potential leakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline) of the area affected by the CO2 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements. Therefore, the methodological approach is important because it can affect the spatial and temporal variability of this flux and even jeopardize the total value of CO2 in a given area. In this sense, measurements of CO2 flux were done using portable infrared analyzers (i.e., accumulation chambers) adapted to monitoring the geological storage of CO2, and other measurements of trace gases, e.g. radon isotopes and remote sensing imagery were tested in the natural analogue of Campo de Calatrava (Ciudad Real, Spain) with the aim to apply in CO2 leakage detection; thus, observing a high correlation between CO2 and radon (r=0,858) and detecting some vegetation indices that may be successfully applied for the leakage detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliographical references (p. 36-38).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Description based on: No. 192 (Jan. 1963).