939 resultados para genome wide complex trait analysis
Resumo:
Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
Resumo:
The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan.
Resumo:
Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.
Resumo:
Proteolytic processing of the CUX1 transcription factor generates an isoform, p110 that accelerates entry into S phase. To identify targets of p110 CUX1 that are involved in cell cycle progression, we performed genome-wide location analysis using a promoter microarray. Since there are no antibodies that specifically recognize p110, but not the full-length protein, we expressed physiological levels of a p110 isoform with two tags and purified chromatin by tandem affinity purification (ChAP). Conventional ChIP performed on synchronized populations of cells confirmed that p110 CUX1 is recruited to the promoter of cell cycle-related targets preferentially during S phase. Multiple approaches including silencing RNA (siRNA), transient infection with retroviral vectors, constitutive expression and reporter assays demonstrated that most cell cycle targets are activated whereas a few are repressed or not affected by p110 CUX1. Functional classes that were over-represented among targets included DNA replication initiation. Consistent with this finding, constitutive expression of p110 CUX1 led to a premature and more robust induction of replication genes during cell cycle progression, and stimulated the long-term replication of a plasmid bearing the oriP replicator of Epstein Barr virus (EBV).
Resumo:
Les habitudes de consommation de substances psychoactives, le stress, l’obésité et les traits cardiovasculaires associés seraient en partie reliés aux mêmes facteurs génétiques. Afin d’explorer cette hypothèse, nous avons effectué, chez 119 familles multi-générationnelles québécoises de la région du Saguenay-Lac-St-Jean, des études d’association et de liaison pangénomiques pour les composantes génétiques : de la consommation usuelle d’alcool, de tabac et de café, de la réponse au stress physique et psychologique, des traits anthropométriques reliés à l’obésité, ainsi que des mesures du rythme cardiaque (RC) et de la pression artérielle (PA). 58000 SNPs et 437 marqueurs microsatellites ont été utilisés et l’annotation fonctionnelle des gènes candidats identifiés a ensuite été réalisée. Nous avons détecté des corrélations phénotypiques significatives entre les substances psychoactives, le stress, l’obésité et les traits hémodynamiques. Par exemple, les consommateurs d’alcool et de tabac ont montré un RC significativement diminué en réponse au stress psychologique. De plus, les consommateurs de tabac avaient des PA plus basses que les non-consommateurs. Aussi, les hypertendus présentaient des RC et PA systoliques accrus en réponse au stress psychologique et un indice de masse corporelle (IMC) élevé, comparativement aux normotendus. D’autre part, l’utilisation de tabac augmenterait les taux corporels d’épinéphrine, et des niveaux élevés d’épinéphrine ont été associés à des IMC diminués. Ainsi, en accord avec les corrélations inter-phénotypiques, nous avons identifié plusieurs gènes associés/liés à la consommation de substances psychoactives, à la réponse au stress physique et psychologique, aux traits reliés à l’obésité et aux traits hémodynamiques incluant CAMK4, CNTN4, DLG2, DAG1, FHIT, GRID2, ITPR2, NOVA1, NRG3 et PRKCE. Ces gènes codent pour des protéines constituant un réseau d’interactions, impliquées dans la plasticité synaptique, et hautement exprimées dans le cerveau et ses tissus associés. De plus, l’analyse des sentiers de signalisation pour les gènes identifiés (P = 0,03) a révélé une induction de mécanismes de Potentialisation à Long Terme. Les variations des traits étudiés seraient en grande partie liées au sexe et au statut d’hypertension. Pour la consommation de tabac, nous avons noté que le degré et le sens des corrélations avec l’obésité, les traits hémodynamiques et le stress sont spécifiques au sexe et à la pression artérielle. Par exemple, si des variations ont été détectées entre les hommes fumeurs et non-fumeurs (anciens et jamais), aucune différence n’a été observée chez les femmes. Nous avons aussi identifié de nombreux traits reliés à l’obésité dont la corrélation avec la consommation de tabac apparaît essentiellement plus liée à des facteurs génétiques qu’au fait de fumer en lui-même. Pour le sexe et l’hypertension, des différences dans l’héritabilité de nombreux traits ont également été observées. En effet, des analyses génétiques sur des sous-groupes spécifiques ont révélé des gènes additionnels partageant des fonctions synaptiques : CAMK4, CNTN5, DNM3, KCNAB1 (spécifique à l’hypertension), CNTN4, DNM3, FHIT, ITPR1 and NRXN3 (spécifique au sexe). Ces gènes codent pour des protéines interagissant avec les protéines de gènes détectés dans l’analyse générale. De plus, pour les gènes des sous-groupes, les résultats des analyses des sentiers de signalisation et des profils d’expression des gènes ont montré des caractéristiques similaires à celles de l’analyse générale. La convergence substantielle entre les déterminants génétiques des substances psychoactives, du stress, de l’obésité et des traits hémodynamiques soutiennent la notion selon laquelle les variations génétiques des voies de plasticité synaptique constitueraient une interface commune avec les différences génétiques liées au sexe et à l’hypertension. Nous pensons, également, que la plasticité synaptique interviendrait dans de nombreux phénotypes complexes influencés par le mode de vie. En définitive, ces résultats indiquent que des approches basées sur des sous-groupes et des réseaux amélioreraient la compréhension de la nature polygénique des phénotypes complexes, et des processus moléculaires communs qui les définissent.
Resumo:
Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS.
Resumo:
Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.
Resumo:
Plant responses against pathogens cause up-and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e. g., pathogenesis-related protein 5), regulation of the cell cycle (e. g., cytokinin-repressed proteins), signal transduction (e. g., CAX-interacting protein 4, SNF1 kinase), transcriptional regulators (e. g., WRKY and SCARECROW transcription factors), stress response proteins (e. g., Hsp90, DNA-J, 20S proteasome alpha subunit B, translationally controlled tumor protein), ubiquitins (e. g., polyubiquitin, ubiquitin activating enzyme 2), among others. Downregulated genes were also identified, which likewise display identity with genes involved in several metabolic pathways. Differential expression of selected genes was validated by macroarray analysis and quantitative real-time polymerase chain reaction. The possible roles played by some of these genes in the viral infection cycle are discussed.
Resumo:
Background: Meat quality involves many traits, such as marbling, tenderness, juiciness, and backfat thickness, all of which require attention from livestock producers. Backfat thickness improvement by means of traditional selection techniques in Canchim beef cattle has been challenging due to its low heritability, and it is measured late in an animal's life. Therefore, the implementation of new methodologies for identification of single nucleotide polymorphisms (SNPs) linked to backfat thickness are an important strategy for genetic improvement of carcass and meat quality.Results: The set of SNPs identified by the random forest approach explained as much as 50% of the deregressed estimated breeding value (dEBV) variance associated with backfat thickness, and a small set of 5 SNPs were able to explain 34% of the dEBV for backfat thickness. Several quantitative trait loci (QTL) for fat-related traits were found in the surrounding areas of the SNPs, as well as many genes with roles in lipid metabolism.Conclusions: These results provided a better understanding of the backfat deposition and regulation pathways, and can be considered a starting point for future implementation of a genomic selection program for backfat thickness in Canchim beef cattle. © 2013 Mokry et al.; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)