996 resultados para genetic procedures
Resumo:
The missing-item format and interrupted behaviour chain strategy have been used to increase spontaneous requests among children with developmental disabilities, but their relative effectiveness has not been compared. The present study compared the extent to which each strategy evoked spontaneous requests and challenging behaviour in three children with autism. Sessions where a needed item was withheld (missing-item format) were compared to sessions involving the removal of a needed item (interrupted behaviour chain strategy). Comparisons were conducted across three activates in an alternating treatments design. Both strategies evoked spontaneous requests with no significant difference in effectiveness. Few differences were obtained in the amount of challenging behaviour evoked but the two conditions, although a moderate inverse relationship between spontaneous requesting and challenging behaviour was observed. The results suggest that theses two procedures yield similar outcomes. Concurrent use of both strategies may enable teachers to create a greater number of opportunities for requesting.
Resumo:
In the field of semantic grid, QoS-based Web service composition is an important problem. In semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the composition consider not only QoS properties of Web services, but also inter service dependencies and conflicts which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address the Web service composition optimization problem in the presence of domain constraints and inter service dependencies and conflicts. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.
Resumo:
Rapid advancements in the field of genetic science have engendered considerable debate, speculation, misinformation and legislative action worldwide. While programs such as the Human Genome Project bring the prospect of seemingly miraculous medical advancements within imminent reach, they also create the potential for significant invasions of traditional areas of privacy and human dignity through laying the potential foundation for new forms of discrimination in insurance, employment and immigration regulation. The insurance industry, which has of course, traditionally been premised on discrimination as part of its underwriting process, is proving to be the frontline of this regulatory battle with extensive legislation, guidelines and debate marking its progress.
Resumo:
This paper describes experiments conducted in order to simultaneously tune 15 joints of a humanoid robot. Two Genetic Algorithm (GA) based tuning methods were developed and compared against a hand-tuned solution. The system was tuned in order to minimise tracking error while at the same time achieve smooth joint motion. Joint smoothness is crucial for the accurate calculation of online ZMP estimation, a prerequisite for a closedloop dynamically stable humanoid walking gait. Results in both simulation and on a real robot are presented, demonstrating the superior smoothness performance of the GA based methods.
Resumo:
Cloud computing is a latest new computing paradigm where applications, data and IT services are provided over the Internet. Cloud computing has become a main medium for Software as a Service (SaaS) providers to host their SaaS as it can provide the scalability a SaaS requires. The challenges in the composite SaaS placement process rely on several factors including the large size of the Cloud network, SaaS competing resource requirements, SaaS interactions between its components and SaaS interactions with its data components. However, existing applications’ placement methods in data centres are not concerned with the placement of the component’s data. In addition, a Cloud network is much larger than data center networks that have been discussed in existing studies. This paper proposes a penalty-based genetic algorithm (GA) to the composite SaaS placement problem in the Cloud. We believe this is the first attempt to the SaaS placement with its data in Cloud provider’s servers. Experimental results demonstrate the feasibility and the scalability of the GA.
Resumo:
Web service composition is an important problem in web service based systems. It is about how to build a new value-added web service using existing web services. A web service may have many implementations, all of which have the same functionality, but may have different QoS values. Thus, a significant research problem in web service composition is how to select a web service implementation for each of the web services such that the composite web service gives the best overall performance. This is so-called optimal web service selection problem. There may be mutual constraints between some web service implementations. Sometimes when an implementation is selected for one web service, a particular implementation for another web service must be selected. This is so called dependency constraint. Sometimes when an implementation for one web service is selected, a set of implementations for another web service must be excluded in the web service composition. This is so called conflict constraint. Thus, the optimal web service selection is a typical constrained ombinatorial optimization problem from the computational point of view. This paper proposes a new hybrid genetic algorithm for the optimal web service selection problem. The hybrid genetic algorithm has been implemented and evaluated. The evaluation results have shown that the hybrid genetic algorithm outperforms other two existing genetic algorithms when the number of web services and the number of constraints are large.
Resumo:
Composite web services comprise several component web services. When a composite web service is executed centrally, a single web service engine is responsible for coordinating the execution of the components, which may create a bottleneck and degrade the overall throughput of the composite service when there are a large number of service requests. Potentially this problem can be handled by decentralizing execution of the composite web service, but this raises the issue of how to partition a composite service into groups of component services such that each group can be orchestrated by its own execution engine while ensuring acceptable overall throughput of the composite service. Here we present a novel penalty-based genetic algorithm to solve the composite web service partitioning problem. Empirical results show that our new algorithm outperforms existing heuristic-based solutions.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
Scientific discoveries, developments in medicine and health issues are the constant focus of media attention and the principles surrounding the creation of so called ‘saviour siblings’ are of no exception. The development in the field of reproductive techniques has provided the ability to genetically analyse embryos created in the laboratory to enable parents to implant selected embryos to create a tissue-matched child who may be able to cure an existing sick child. The research undertaken in this thesis examines the regulatory frameworks overseeing the delivery of assisted reproductive technologies (ART) in Australia and the United Kingdom and considers how those frameworks impact on the accessibility of in vitro fertilisation (IVF) procedures for the creation of ‘saviour siblings’. In some jurisdictions, the accessibility of such techniques is limited by statutory requirements. The limitations and restrictions imposed by the state in relation to the technology are analysed in order to establish whether such restrictions are justified. The analysis is conducted on the basis of a harm framework. The framework seeks to establish whether those affected by the use of the technology (including the child who will be created) are harmed. In order to undertake such evaluation, the concept of harm is considered under the scope of John Stuart Mill’s liberal theory and the Harm Principle is used as a normative tool to judge whether the level of harm that may result, justifies state intervention or restriction with the reproductive decision-making of parents in this context. The harm analysis conducted in this thesis seeks to determine an appropriate regulatory response in relation to the use of pre-implantation tissue-typing for the creation of ‘saviour siblings’. The proposals outlined in the last part of this thesis seek to address the concern that harm may result from the practice of pre-implantation tissue-typing. The current regulatory frameworks in place are also analysed on the basis of the harm framework established in this thesis. The material referred to in this thesis reflects the law and policy in place in Australia and the UK at the time the thesis was submitted for examination (December 2009).