917 resultados para galaxy clusters
Resumo:
Extended cluster radio galaxies show different morphologies com- pared to those found isolated in the field. Indeed, symmetric double radio galaxies are only a small percentage of the total content of ra- dio loud cluster galaxies, which show mainly tailed morphologies (e.g. O’Dea & Owen, 1985). Moreover, cluster mergers can deeply affect the statistical properties of their radio activity. In order to better understand the morphological and radio activity differences of the radio galaxies in major mergeing and non/tidal-merging clusters, we performed a multifrequency study of extended radio galax- ies inside two cluster complexes, A3528 and A3558. They belong to the innermost region of the Shapley Concentration, the most massive con- centration of galaxy clusters (termed supercluster) in the local Universe, at average redshift z ≈ 0.043. We analysed low frequency radio data performed at 235 and 610 MHz with Giant Metrewave Radio Telescope (GMRT) and we combined them with proprietary and literature observations, in order to have a wide frequency range (150 MHz to 8.4 GHz) to perform the spectral analysis. The low frequency images allowed us to carry out a detailed study of the radio tails and diffuse emission found in some cases. The results in the radio band were also qualitatively compared with the X-ray information coming from XMM-Newton observations, in order to test the interaction between radio galaxies and cluster weather. We found that the brightest central galaxies (BCGs) in the A3528 cluster complex are powerful and present substantial emission from old relativistic plasma characterized by a steep spectrum (α > 2). In the light of observational pieces of evidence, we suggest they are possible re-started radio galaxies. On the other hand, the tailed radio galaxies trace the host galaxy motion with respect to the ICM, and our find- ings is consistent with the dynamical interpretation of a tidal interaction (Gastaldello et al. 2003). On the contrary, the BCGs in the A3558 clus- ter complex are either quiet or very faint radio galaxies, supporting the hypothesis that clusters mergers quench the radio emission from AGN.
Resumo:
This work is focused on axions and axion like particles (ALPs) and their possible relation with the 3.55 keV photon line detected, in recent years, from galaxy clusters and other astrophysical objects. We focus on axions that come from string compactification and we study the vacuum structure of the resulting low energy 4D N=1 supergravity effective field theory. We then provide a model which might explain the 3.55 keV line through the following processes. A 7.1 keV dark matter axion decays in two light axions, which, in turn, are transformed into photons thanks to the Primakoff effect and the existence of a kinetic mixing between two U(1)s gauge symmetries belonging respectively to the hidden and the visible sector. We present two models, the first one gives an outcome inconsistent with experimental data, while the second can yield the desired result.
Resumo:
Gli ammassi di galassie (galaxy clusters) sono aggregati di galassie legate dalla forza di attrazione gravitazionale. Essi sono le più grandi strutture virializzate dell’Universo e la loro luminosità è dovuta alle galassie che li compongono e al cosiddetto intracluster medium (ICM), gas intergalattico in grado di raggiungere temperature di milioni di gradi. L’ICM è caratterizzato da emissioni sia di tipo termico che non termico, rispettivamente nella banda X e nella banda Radio, dovute soprattutto al meccanismo di bremsstrahlung termica e all’emissione di sincrotrone. Lo studio delle radiazioni emesse da questo gas primordiale ha permesso di studiare alcuni processi caratteristici nella dinamica degli ammassi di galassie, come i fenomeni di merger e cooling flow , e di ottenere quindi una maggiore comprensione della formazione ed evoluzione degli ammassi. Essendo le più grandi strutture dell’Universo che abbiano raggiunto l’equilibrio viriale, il loro studio risulta infatti molto importante, in quanto fornisce un valido strumento per la formulazione di un Modello Cosmologico. Lo scopo di questo lavoro di tesi consiste in particolare nell'analisi di Aloni e Relitti radio, con maggiore approfondimento sui primi, e sulla ricerca di una correlazione della potenza Radio dei clusters sia con la loro luminosità nella banda X, che con la loro dimensione spaziale. La raccolta e l’elaborazione dei dati è stata svolta presso l’osservatorio di radioastronomia (ORA) situato nel CNR di Bologna.
Resumo:
Filaments of galaxies are known to stretch between galaxy clusters at all redshifts in a complex manner. In this Letter, we present an analysis of the frequency and distribution of intercluster galaxy filaments selected from the 2dF Galaxy Redshift Survey. Out of 805 cluster-cluster pairs, we find at least 40 per cent have bona fide filaments. We introduce a filament classification scheme and divide the filaments into several types according to their visual morphology: straight (lying on the cluster-cluster axis; 37 per cent), warped or curved (lying off the cluster-cluster axis; 33 per cent), sheets (planar configurations of galaxies; 3 per cent), uniform (1 per cent) and irregular (26 per cent). We find that straight filaments are more likely to reside between close cluster pairs and they become more curved with increasing cluster separation. This curving is toward a larger mass concentration in general. We also show that the more massive a cluster is, the more likely it is to have a larger number of filaments. Our results are found to be consistent with a cold dark matter cosmology.
Resumo:
Recently, very massive compact stellar systems have been discovered in the intracluster regions of galaxy clusters and in the nuclear regions of late-type disk galaxies. It is unclear how these compact stellar systems - known as ultracompact dwarf (UCD) galaxies or nuclear clusters (NCs) - form and evolve. By adopting a formation scenario in which these stellar systems are the product of multiple merging of star clusters in the central regions of galaxies, we investigate, numerically, their physical properties. We find that physical correlations among velocity dispersion, luminosity, effective radius, and average surface brightness in the stellar merger remnants are quite different from those observed in globular clusters. We also find that the remnants have triaxial shapes with or without figure rotation, and these shapes and their kinematics depend strongly on the initial number and distribution of the progenitor clusters. These specific predictions can be compared with the corresponding results of ongoing and future observations of UCDs and NCs, thereby providing a better understanding of the origin of these enigmatic objects.
Structure and dynamics of the Shapley Supercluster - Velocity catalogue, general morphology and mass
Resumo:
We present results of our wide-field redshift survey of galaxies in a 285 square degree region of the Shapley Supercluster (SSC), based on a set of 10 529 velocity measurements (including 1201 new ones) on 8632 galaxies obtained from various telescopes and from the literature. Our data reveal that the main plane of the SSC (v approximate to 14 500 km s(-1)) extends further than previous estimates, filling the whole extent of our survey region of 12 degrees by 30 degrees on the sky (30 x 75 h(-1) Mpc). There is also a connecting structure associated with the slightly nearer Abell 3571 cluster complex (v approximate to 12 000 km s(-1)). These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at v = 15 000 km s(-1) near RA = 13(h). They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. In the velocity range of the Shapley Supercluster (9000 km s(-1) < cz < 18 000 km s(-1)), we found redshift-space overdensities with b(j) < 17.5 of similar or equal to 5.4 over the 225 square degree central region and similar or equal to 3.8 in a 192 square degree region excluding rich clusters. Over the large region of our survey, we find that the intercluster galaxies make up 48 per cent of the observed galaxies in the SSC region and, accounting for the different completeness, may contribute nearly twice as much mass as the cluster galaxies. In this paper, we discuss the completeness of the velocity catalogue, the morphology of the supercluster, the global overdensity, and some properties of the individual galaxy clusters in the Supercluster.
Resumo:
The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales.
Resumo:
The Sunyaev-Zel'dovich (SZ) effect is a spectral distortion of the cosmic microwave background as observed through the hot plasma in galaxy clusters. This distortion is a decrement in the CMB intensity for λ > 1.3 mm, an increment at shorter wavelengths, and small again by λ ~ 250 μm. As part of the Herschel Lensing Survey (HLS) we have mapped 1E0657–56 (the Bullet cluster) with SPIRE with bands centered at 250, 350 and 500 μm and have detected the SZ effect at the two longest wavelengths. The measured SZ effect increment central intensities are ΔI_0 = 0.097 ± 0.019 MJy sr^-1 at 350 μm and ΔI_0 = 0.268 ± 0.031 MJy sr^-1 at 500 μm, consistent with the SZ effect spectrum derived from previous measurements at 2 mm. No other diffuse emission is detected. The presence of the finite temperature SZ effect correction is preferred by the SPIRE data at a significance of 2.1σ, opening the possibility that the relativistic SZ effect correction can be constrained by SPIRE in a sample of clusters. The results presented here have important ramifications for both sub-mm measurements of galaxy clusters and blank field surveys with SPIRE.
Resumo:
We discuss the impact of the results from the recent Hipparcos astrometric satellite on distance estimates of galactic globular clusters. Recalibrating the clusters not only implies a relatively small change in the distance to the Large Magellanic Cloud, and hence a rescaling of several estimates of the Hubble constant, but also leads to significantly younger cluster ages. Although the data are not yet conclusive, the results so far point to a likely resolution of the apparent paradox of a universe younger than its constituents, without requiring significant modifications to simple cosmological models.
Resumo:
From the available H I data on spiral galaxies in three rich Abell clusters and the Virgo Cluster, it is shown that galaxies with medium to large optical sizes tend to be more severely deficient in atomic hydrogen than the small galaxies. This is so both in terms of the fractional number of galaxies that are deficient and the amount of gas lost by a galaxy. The fraction of H I-deficient galaxies increases with size over most of the size range, saturating or dropping only for the largest galaxies. A comparative study is made of various currently accepted gas removal mechanisms, namely those which are a result of galaxy-intracluster medium interactions, e.g., ram pressure stripping, as well as those due to galaxy-galaxy interactions, i.e., collisions and tidal interactions. It is shown that, with the exception of tidal interactions, all of these mechanisms would produce a size dependence in H I deficiency that is the opposite of that observed. That is, the gas in the largest galaxies would be the least affected by these mechanisms. However, if there is significant mass segregation, these processes may give the trends observed in the size dependence of H I deficiency.
Resumo:
The restricted three-body method is used to model the effect of the mean tidal field of a cluster of galaxies on the internal dynamics of a disk galaxy falling into the cluster for the first time. In the model adopted the galaxy experiences a tidal field that is compressive within the core of the cluster. The planar random velocities of all components in the disk increase after the galaxy passes through the core of the cluster. The low-velocity dispersion gas clouds experience a relatively larger increase in random velocity than the hotter stellar components. The increase in planar velocities results in a strong anisotropy between the planar and vertical velocity dispersions. It is argued that this will make the disk unstable to the 'fire-hose instability' which leads to bending modes in the disk and which will thicken the disk slightly. The mean tidal fields in rich clusters were probably stronger during the epoch of cluster formation and relaxation than they are in present-day relaxed clusters.
Resumo:
Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P-jet = 10(44-45) erg s(-1), typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.
Resumo:
We introduce a new survey of massive stars in the Galaxy and the Magellanic Clouds using the Fibre Large Array Multi- Element Spectrograph ( FLAMES) instrument at the Very Large Telescope ( VLT). Here we present observations of 269 Galactic stars with the FLAMES- Giraffe Spectrograph ( R similar or equal to 25 000), in fields centered on the open clusters NGC3293, NGC4755 and NGC6611. These data are supplemented by a further 50 targets observed with the Fibre- Fed Extended Range Optical Spectrograph ( FEROS, R = 48 000). Following a description of our scientific motivations and target selection criteria, the data reduction methods are described; of critical importance the FLAMES reduction pipeline is found to yield spectra that are in excellent agreement with less automated methods. Spectral classifications and radial velocity measurements are presented for each star, with particular attention paid to morphological peculiarities and evidence of binarity. These observations represent a significant increase in the known spectral content of NGC3293 and NGC4755, and will serve as standards against which our subsequent FLAMES observations in the Magellanic Clouds will be compared.
Resumo:
We present an analysis of high resolution VLT-FLAMES spectra of 61 B-type stars with relatively narrow-lined spectra located in 4 fields centered on the Milky Way clusters; NGC 3293 and NGC 4755 and the Large and Small Magellanic cloud clusters; NGC 2004 and NGC 330. For each object a quantitative analysis was carried out using the non-LTE model atmosphere code TLUSTY; resulting in the determination of their atmospheric parameters and photospheric abundances of the dominant metal species (C, N, O, Mg, Si, Fe). The results are discussed in relation to our earlier work on 3 younger clusters in these galaxies; NGC 6611, N11 and NGC 346 paying particular attention to the nitrogen abundances which are an important probe of the role of rotation in the evolution of stars. This work along with that of the younger clusters provides a consistent dataset of abundances and atmospheric parameters for over 100 B-type stars in the three galaxies. We provide effective temperature scales for B-type dwarfs in all three galaxies and for giants and supergiants in the SMC and LMC. In each galaxy a dependence on luminosity is found between the three classes with the unevolved dwarf objects having significantly higher effective temperatures. A metallicity dependence is present between the SMC and Galactic dwarf objects, and whilst the LMC stars are only slightly cooler than the SMC stars, they are significantly hotter than their Galactic counterparts.
Resumo:
The study of old open clusters outside the solar circle can bring constraints on formation scenarios of the outer disc. In particular, accretion of dwarf galaxies has been proposed as a likely mechanism in the area. We use BVI photometry for determining fundamental parameters of the faint open cluster ESO 92-SC05. Colour-magnitude diagrams are compared with Padova isochrones, in order to derive age, reddening and distance. We derive a reddening E(B - V) = 0.17, and an old age of similar to 6.0 Gyr. It is one of the rare open clusters known to be older than 5 Gyr. A metallicity of Z similar to 0.004 or [M/H] similar to -0.7 is found. The rather low metallicity suggests that this cluster might be the result of an accretion episode of a dwarf galaxy.