998 resultados para g-irradiation
Resumo:
A quantitative study was made about the effects caused by ionizing irradiation on materials used for dental restoration (amalgams, compound resins and compomere), aiming to alleviate in bearers of head and neck cancer, the possible harmful effects of radiotherapy perceived when the repaired teething is within the radiation field. Research also encourages further studies for new alternative materials to be used in dental repair of patients submitted to radiotherapy for head and neck cancer. Test samples were submitted to a gamma radiation beam coming from a cobalt-therapy source and analyzed according to the X-ray fluorescence technique, comparing the chemical composition of the samples before and after irradiation. Radiation detectors such as an ionization chamber and a Geiger-Muller were used to measure the rate of residual dose. Gamma spectrometry with Nal detectors was also performed on the same samples. Results showed that there was no significant change in the chemical composition and that at post-irradiation, samples did not exhibit radiation emission, that is to say they had not become radioactive.
Resumo:
Purpose: This study evaluated the effectiveness of different exposure times of microwave irradiation on the disinfection of a hard chairside reline resin. Materials and Methods: Sterile specimens were individually inoculated with one of the tested microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Bacillus subtilis) and incubated for 24 hours at 37°C. For each microorganism, 10 specimens were not microwaved (control), and 50 specimens were microwaved. Control specimens were individually immersed in sterile saline, and replicate aliquots of serial dilutions were plated on selective media appropriate for each organism. Irradiated specimens were immersed in water and microwaved at 650 W for 1, 2, 3, 4, or 5 minutes before serial dilutions and platings. After 48 hours of incubation, colonies on plates were counted. Irradiated specimens were also incubated for 7 days. Some specimens were prepared for scanning electron microscopic (SEM) analysis. Results: Specimens irradiated for 3, 4, and 5 minutes showed sterilization. After 2 minutes of irradiation, specimens inoculated with C. albicans were sterilized, whereas those inoculated with bacteria were disinfected. One minute of irradiation resulted in growth of all microorganisms. SEM examination indicated alteration in cell morphology of sterilized specimens. The effectiveness of microwave irradiation was improved as the exposure time increased. Conclusion: This study suggests that 3 minutes of microwave irradiation can be used for acrylic resin sterilization, thus preventing cross-contamination. © 2008 by The American College of Prosthodontists.
Resumo:
To carry out the dating by the Fission Track Method (FTM) the international community that works with this method employs methodologies in which the mineral to be dated must be irradiated with neutrons. Such irradiation, performed in a nuclear reactor, demand a relatively long waiting time so that the activity of the sample attain a proper level for handling. The present work aims to establish a methodology that makes possible the dating by FTM using a mass spectrometer instead of a nuclear reactor. This methodology was applied to apatite samples from Durango, Mexico. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effect on micro-tensile bond strength (mu-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer's instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd: YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm(2)) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (alpha = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher mu-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in mu-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher mu-TBS when compared to the suggested manufacturer's technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.
Resumo:
To evaluate the ability of low time microwaveexposureto inactivate and damage cell membrane integrity of C. albicans. Materials and Methods: Two 200ml C. albicans suspensions were obtained. Sterile dentures were placed in a beaker containing Experimental (ES) or Control suspensions (CS). ES was microwaved at 650 W for 1, 2, 3, 4 or 5 min. Suspensions were optically counted using Methylene blue dye as indicative of membrane-damaged cells; spread on Agar Sabouraud dextrose (ASD) for viability assay; or spectrophotometrically measured at 550nm. Cell-free solutions were submitted to content analyses of protein (Bradford and Pyrogallol red methods); Ca++ (Cresolphthalein Complexone method); DNA (spectrophotometer measurements at 260nm) and K+ (selective electrode technique). Data were analyzed by Student-t test and linear regression (α=0.05). In addition, flowcytometry analysis of Candida cells in suspensionwas performed using propidium iodide. Results: All ES cells demonstrated cell membrane damage at 3, 4 and 5 min,viable cells were nonexistent at 3, 4 and 5 min ES ASD plates and optical density of ES and CS was not significantly differentfor all exposition times. ES cells released highcontents of protein, K+ , Ca++ and DNA after 2 min exposition when compared to that of the CSs. Similar results were observed with flow cytometry analysiswith regard to the periodsof microwave exposure. Conclusions: Microwave irradiation inactivated C. albicansafter 3min and damaged cell membrane integrity after 2 min exposition.
Resumo:
A GC method to determine caprolactam in water, 15 ethanol, and olive oil food simulants was developed and validated. Linear ranges varied from 0.96 to 642.82 g/mL for water, 0.64 to 800.32 g/mL for 15 ethanol, and 1.06 to 1062.34 g/g for olive oil, with correlation coefficients higher than 0.999. Method precision studies showed RSD values lower than 5.45, while method accuracy studies showed recovery from 72 to 111 for all simulants. The effect of gamma irradiation on caprolactam migration from multilayer polyamide 6 (PA-6) films intended for cheese into water, 15 ethanol, olive oil, and 3 acetic acid simulants was also studied. For migration assay, non-irradiated and irradiated (12 kGy) films were placed in contact with the simulant and exposed at 40C for 10 days. The validated method was used to quantify caprolactam migration from multilayer PA-6 films into the simulants, which ranged from 1.03 to 7.59 mg/kg for non-irradiated films, and from 4.82 to 11.32 mg/kg for irradiated films. Irradiation caused almost no changes in caprolactam levels, with the exception of olive oil, which showed an increase in the caprolactam level. All multilayer PA-6 films were in accordance with the requirements of the legislation for caprolactam migration.
Resumo:
We evaluated the effect of gamma irradiation doses (0, 125, 250, and 500 Gy) in control of psychrotrophic bacteria in different strains of Agaricus bisporus (ABI-07/06, ABI-05/03, and PB-1) during storage, cultivated in composts based on oat straw (Avena sativa) and Brachiaria spp. The experimental design was completely randomized in a factorial scheme 4 2 3 (irradiation doses composts strains), with 24 treatments, each consisting of 2 replicates, totaling 48 experimental units (samples of mushrooms). The mushrooms collected from all culture conditions were packaged in plastic polypropylene with 200 g each and subjected to Cobalt-60 irradiator, type Gammacell 220, and dose rate 0.740 kGy h–1 , according to the treatments. Subsequently, the control (nonirradiated) and other treatments were maintained at 4 ± 1°C and 90% relative humidity (RH) in a climatic chamber to perform the microbiological analysis of mushrooms on the 1st and 14th day of storage. According to the results, it was found that the highest mean colony psychotrophic count, after 14 days of storage, was observed in strain ABI-07/06 1.30 × 108 g -1 most probable number (MPN) in nonirradiated mushrooms, coming from Brachiaria grass-based compost, and this same strain under the same storage conditions, coming from the same type of compost that underwent a dose of 500 Gy, obtained a significant reduction in mean colonies of psychrotrophic bacteria (2.25 × 104 g –1 MPN). Thus, the irradiation doses tested favored reducing the number of colonies of psychrotrophic bacteria, regardless of the type of compound and strain of A. bisporus.
Resumo:
Peanut samples were irradiated (0.0, 5.2, 7.2 or 10.0 kGy), stored for a year (room temperature) and examined every three months. Mycotoxic fungi (MF) were detected in non-irradiated blanched peanuts. A dose of 5.2 kGy was found suitable to prevent MF growth in blanched samples. No MF was detected in in-shell peanuts, with or without irradiation. The colors of the control in-shell and blanched samples were, respectively, 44.72 and 60.21 (L *); 25.20 and 20.38 (Chroma); 53.05 and 86.46 (degrees Hue). The water activities (Aw) were 0.673 and 0.425. The corresponding fatty acids were 13.33% and 12.14% (C16:0), 44.94% and 44.92% (C18:1,omega 9) and 37.10% and 37.63% (C18: 2,omega 6). The total phenolics (TP) were 4.62 and 2.52 mg GAE/g, with antioxidant activities (AA) of 16.97 and 10.36 mu mol TEAC/g. Storage time negatively correlated with Aw (in-shell peanuts) or L *, linoleic acid, TP and AA (in-shell and blanched peanuts) but positively correlated with Aw (blanched peanuts), and with oleic acid (in-shell and blanched peanuts). Irradiation positively correlated with antioxidant activity (blanched peanuts). No correlation was found between irradiation and AA (in-shell samples) or fatty acids and TP (in-shell and blanched peanuts). Irradiation protected against MF and retained both the polyunsaturated fatty acids and polyphenols in the samples.
Resumo:
Low-level laser irradiation (LLLI) and recombinant human bone morphogenetic protein type 2 (rhBMP-2) have been used to stimulate bone formation. LLLI stimulates proliferation of osteoblast precursor cells and cell differentiation and rhBMP-2 recruits osteoprogenitor cells to the bone healing area. This in vivo study evaluated the effects of LLLI and rhBMP-2 on the bone healing process in rats. Critical bone defects were created in the parietal bone in 42 animals, and the animals were divided into six treatment groups: (1) laser, (2) 7 mu g of rhBMP-2, (3) laser and 7 mu g of rhBMP-2, (4) 7 mu g of rhBMP-2/monoolein gel, (5) laser and 7 mu g rhBMP-2/monoolein gel, and (6) critical bone defect controls. A gallium-aluminum-arsenide diode laser was used (wavelength 780 nm, output power 60 mW, beam area 0.04 cm(2), irradiation time 80 s, energy density 120 J/cm(2), irradiance 1.5 W/cm(2)). After 15 days, the calvarial tissues were removed for histomorphometric analysis. Group 3 defects showed higher amounts of newly formed bone (37.89%) than the defects of all the other groups (P < 0.05). The amounts of new bone in defects of groups 1 and 4 were not significantly different from each other (24.00% and 24.75%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). The amounts of new bone in the defects of groups 2 and 5 were not significantly different from each other (31.42% and 31.96%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). Group 6 defects had 14.10% new bone formation, and this was significantly different from the amounts in the other groups (P < 0.05). It can be concluded that LLLI administered during surgery effectively accelerated healing of critical bone defects filled with pure rhBMP-2, achieving a better result than LLLI alone or the use of rhBMP-2 alone.
Resumo:
The g-factor is a constant which connects the magnetic moment $vec{mu}$ of a charged particle, of charge q and mass m, with its angular momentum $vec{J}$. Thus, the magnetic moment can be writen $ vec{mu}_J=g_Jfrac{q}{2m}vec{J}$. The g-factor for a free particle of spin s=1/2 should take the value g=2. But due to quantum electro-dynamical effects it deviates from this value by a small amount, the so called g-factor anomaly $a_e$, which is of the order of $10^{-3}$ for the free electron. This deviation is even bigger if the electron is exposed to high electric fields. Therefore highly charged ions, where electric field strength gets values on the order of $10^{13}-10^{16}$V/cm at the position of the bound electron, are an interesting field of investigations to test QED-calculations. In previous experiments [H"aff00,Ver04] using a single hydrogen-like ion confined in a Penning trap an accuracy of few parts in $10^{-9}$ was obtained. In the present work a new method for precise measurement of magnetic the electronic g-factor of hydrogen-like ions is discussed. Due to the unavoidable magnetic field inhomogeneity in a Penning trap, a very important contribution to the systematic uncertainty in the previous measurements arose from the elevated energy of the ion required for the measurement of its motional frequencies. Then it was necessary to extrapolate the result to vanishing energies. In the new method the energy in the cyclotron degree of freedom is reduced to the minimum attainable energy. This method consist in measuring the reduced cyclotron frequency $nu_{+}$ indirectly by coupling the axial to the reduced cyclotron motion by irradiation of the radio frequency $nu_{coup}=nu_{+}-nu_{ax}+delta$ where $delta$ is, in principle, an unknown detuning that can be obtained from the knowledge of the coupling process. Then the only unknown parameter is the desired value of $nu_+$. As a test, a measurement with, for simplicity, artificially increased axial energy was performed yielding the result $g_{exp}=2.000~047~020~8(24)(44)$. This is in perfect agreement with both the theoretical result $g_{theo}=2.000~047~020~2(6)$ and the previous experimental result $g_{exp1}=2.000~047~025~4(15)(44).$ In the experimental results the second error-bar is due to the uncertainty in the accepted value for the electron's mass. Thus, with the new method a higher accuracy in the g-factor could lead by comparison to the theoretical value to an improved value of the electron's mass. [H"af00] H. H"affner et al., Phys. Rev. Lett. 85 (2000) 5308 [Ver04] J. Verd'u et al., Phys. Rev. Lett. 92 (2004) 093002-1
Resumo:
Cutaneous scleroderma is a chronic inflammatory disease of the dermal and subcutaneous connective tissue leading to sclerosis. Sclerosis of the skin can lead to dysmorphism, contractures and restrictions of movement.
Resumo:
The effects of electron beam irradiation, anaerobic packaging, and storage times on the aroma of raw ground beef patties were investigated. Patties were coarse ground at three days postmortem, and then fine ground and packaged at three, six, and nine days postmortem. Patties were irradiated immediately after packaging, or three days after packaging at 2 kGy, and then stored at 2.5 °C ñ1.5 °C for four days. Non-irradiated controls were held under similar conditions. After four days of storage for each postmortem time (three, six, and nine days), sensory aroma evaluations were performed on all samples. Irradiated and non-irradiated patties with the shortest postmortem storage times had the most desirable aroma scores. Controls had significantly (p £ .05) more desirable aroma scores than irradiated patties.