979 resultados para functional vision


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High precision in motor skill performance, in both sport and other domains (e.g. surgery and aviation), requires the efficient coupling of perceptual inputs (e.g. vision) and motor actions. A particular gaze strategy, which has received much attention within the literature, has been shown to predict both inter- (expert vs. novice) and intra-individual (successful vs. unsuccessful) motor performance (see Vine et al., 2014). Vickers (1996) labelled this phenomenon the quiet eye (QE) which is defined as the final fixation before the initiation of the crucial phase of movement. While the positive influence of a long QE on accuracy has been revealed in a range of different motor skills, there is a growing number of studies suggesting that the relationship between QE and motor performance is not entirely monotonic. This raises interesting questions regarding the QE’s purview, and the theoretical approaches explaining its functionality. This talk aims to present an overview of the issues described above, and to discuss contemporary research and experimental approaches to examining the QE phenomenon. In the first part of the talk Dr. Vine will provide a brief and critical review of the literature, highlighting recent empirical advancements and potential directions for future research. In the second part, Dr. Klostermann will communicate three different theoretical approaches to explain the relationship between QE and motor performance. Drawing upon aspects of all three of these theoretical approaches, a functional inhibition role for the QE (related to movement parameterisation) will be proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ribbon synapses are found in sensory systems and are characterized by ‘ribbon-like’ organelles that tether synaptic vesicles. The synaptic ribbons co-localize with sites of calcium entry and vesicle fusion, forming ribbon-style active zones. The ability of ribbon synapses to maintain rapid and sustained neurotransmission is critical for vision, hearing and balance. At retinal ribbon synapses, three vesicle pools have been proposed. A rapid pool of vesicles that are docked at the plasma membrane, and whose fusion is limited only by calcium entry, a releasable pool of ATP-primed vesicles whose size also correlates with the number of ribbon-tethered vesicles, and a reserve pool of non-ribbon-tethered cytoplasmic vesicles. However evidence of vesicle fusion at sites away from ribbon-style active zones questions this organization. Another fundamental question underlying the mechanism of vesicle fusion at these synapses is the role of SNARE (Soluble N-ethylmaleimide sensitive factor Attachment Protein Receptor) proteins. Vesicles at conventional neurons undergo SNARE complex-mediated fusion. However a recent study has suggested that ribbon synapses involved in hearing can operate independently of neuronal SNAREs. We used the well-characterized goldfish bipolar neuron to investigate the organization of vesicle pools and the role of SNARE proteins at a retinal ribbon synapse. We blocked functional refilling of the releasable pool and then stimulated bipolar terminals with brief depolarizations that triggered the fusion of the rapid pool of vesicles. We found that the rapid pool draws vesicles from the releasable pool and that both pools undergo release at ribbon-style active zones. To assess the functional role of SNARE proteins at retinal ribbon synapses, we used peptides derived from SNARE proteins that compete with endogenous proteins for SNARE complex formation. The SNARE peptides blocked fusion of reserve vesicles but not vesicles in the rapid and releasable pools, possibly because both rapid and releasable vesicles were associated with preformed SNARE complexes. However, an activity-dependent block in refilling of the releasable pool was seen, suggesting that new SNARE complexes must be formed before vesicles can join a fusion-competent pool. Taken together, our results suggest that SNARE complex-mediated exocytosis of serially-organized vesicle pools at ribbon-style active zones is important in the neurotransmission of vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emerging use of real-time 3D-based multimedia applications imposes strict quality of service (QoS) requirements on both access and core networks. These requirements and their impact to provide end-to-end 3D videoconferencing services have been studied within the Spanish-funded VISION project, where different scenarios were implemented showing an agile stereoscopic video call that might be offered to the general public in the near future. In view of the requirements, we designed an integrated access and core converged network architecture which provides the requested QoS to end-to-end IP sessions. Novel functional blocks are proposed to control core optical networks, the functionality of the standard ones is redefined, and the signaling improved to better meet the requirements of future multimedia services. An experimental test-bed to assess the feasibility of the solution was also deployed. In such test-bed, set-up and release of end-to-end sessions meeting specific QoS requirements are shown and the impact of QoS degradation in terms of the user perceived quality degradation is quantified. In addition, scalability results show that the proposed signaling architecture is able to cope with large number of requests introducing almost negligible delay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fixation-off sensitivity (FOS) denotes the forms of EEG abnormalities, which are elicited by elimination of central vision or fixation. The phenomenon seems to depend on variables that modulate the alpha rhythm, however, the cerebral mechanisms underlying FOS remain unclear [1]. The scarce previous fMRI findings related to FOS have shown activation in extrastriate cortex [2] and also in frontal areas [3][4]. On the other hand, simultaneous EEG-fMRI technique has been used to assess the relationship between spontaneous power fluctuations of electrical rhythms and associated fMRI signal modulations. These studies have identified that lateral frontoparietal networks show a negative correlation with alpha band in healthy subjects. This neuroanatomical pattern is related to attentional processes and cognitive resources. Moreover, a sub-beta band (17-23 Hz) has been identified with posterior cingulate, temporoparietal junction and dorso-medial prefrontal cortex activations, which correspond to the DMN [5][6].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss future lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing imaging systems for the measurement of oceanic sea states have recently attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss the improvement of their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neural basis for perceptual grouping operations in the human visual system, including the processes which generate illusory contours, is fundamental to understanding human vision. We have employed functional magnetic resonance imaging to investigate these processes noninvasively. Images were acquired on a GE Signa 1.5T scanner equipped for echo planar imaging with an in-plane resolution of 1.5 x 1.5 mm and slice thicknesses of 3.0 or 5.0 mm. Visual stimuli included nonaligned inducers (pacmen) that created no perceptual contours, similar inducers at the corners of a Kanizsa square that created illusory contours, and a real square formed by continuous contours. Multiple contiguous axial slices were acquired during baseline, visual stimulation, and poststimulation periods. Activated regions were identified by a multistage statistical analysis of the activation for each volume element sampled and were compared across conditions. Specific brain regions were activated in extrastriate cortex when the illusory contours were perceived but not during conditions when the illusory contours were absent. These unique regions were found primarily in the right hemisphere for all four subjects and demonstrate that specific brain regions are activated during the kind of perceptual grouping operations involved in illusory contour perception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proinsulin has been characterized as a neuroprotective molecule. In this work we assess the therapeutic potential of proinsulin on photoreceptor degeneration, synaptic connectivity, and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). P23H homozygous rats received an intramuscular injection of an adeno-associated viral vector serotype 1 (AAV1) expressing human proinsulin (hPi+) or AAV1-null vector (hPi−) at P20. Levels of hPi in serum were determined by enzyme-linked immunosorbent assay (ELISA), and visual function was evaluated by electroretinographic (ERG) recording at P30, P60, P90, and P120. Preservation of retinal structure was assessed by immunohistochemistry at P120. Human proinsulin was detected in serum from rats injected with hPi+ at all times tested, with average hPi levels ranging from 1.1 nM (P30) to 1.4 nM (P120). ERG recordings showed an amelioration of vision loss in hPi+ animals. The scotopic b-waves were significantly higher in hPi+ animals than in control rats at P90 and P120. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. hPi+ animals had 48.7% more photoreceptors than control animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in hPi+ P23H rats. Furthermore, in hPi+ rat retinas the number of rod bipolar cell bodies was greater than in control rats. Our data demonstrate that hPi expression preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in the P23H rat. These data strongly support the further development of proinsulin-based therapy to counteract retinitis pigmentosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The P23H rhodopsin mutation is an autosomal dominant cause of retinitis pigmentosa (RP). The degeneration can be tracked using different anatomical and functional methods. In our case, we evaluated the anatomical changes using Spectral-Domain Optical Coherence Tomography (SD-OCT) and correlated the findings with retinal thickness values determined by immunocytochemistry.Methods: Pigmented rats heterozygous for the P23H mutation, with ages between P18 and P180 were studied. Function was assessed by means of optomotor testing and ERGs. Retinal thicknesses measurements, autofluorescence and fluorescein angiography were performed using Spectralis OCT. Retinas were studied by means of immunohistochemistry. Results: Between P30 and P180, visual acuity decreased from 0.500 to 0.182 cycles per degree (cyc/deg) and contrast sensitivity decreased from 54.56 to 2.98 for a spatial frequency of 0.089 cyc/deg. Only cone-driven b-wave responses reached developmental maturity. Flicker fusions were also comparable at P29 (42 Hz). Double flash-isolated rod-driven responses were already affected at P29. Photopic responses revealed deterioration after P29.A reduction in retinal thicknesses and morphological modifications were seen in OCT sections. Statistically significant differences were found in all evaluated thicknesses. Autofluorescence was seen in P23H rats as sparse dots. Immunocytochemistry showed a progressive decrease in the outer nuclear layer (ONL), and morphological changes. Although anatomical thickness measures were significantly lower than OCT values, there was a very strong correlation between the values measured by both techniques.Conclusions: In pigmented P23H rats, a progressive deterioration occurs in both retinal function and anatomy. Anatomical changes can be effectively evaluated using SD-OCT and immunocytochemistry, with a good correlation between their values, thus making SD-OCT an important tool for research in retinal degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le traumatisme craniocérébral léger (TCCL) a des effets complexes sur plusieurs fonctions cérébrales, dont l’évaluation et le suivi peuvent être difficiles. Les problèmes visuels et les troubles de l’équilibre font partie des plaintes fréquemment rencontrées après un TCCL. En outre, ces problèmes peuvent continuer à affecter les personnes ayant eu un TCCL longtemps après la phase aiguë du traumatisme. Cependant, les évaluations cliniques conventionnelles de la vision et de l’équilibre ne permettent pas, la plupart du temps, d’objectiver ces symptômes, surtout lorsqu’ils s’installent durablement. De plus, il n’existe pas, à notre connaissance, d’étude longitudinale ayant étudié les déficits visuels perceptifs, en tant que tels, ni les troubles de l’équilibre secondaires à un TCCL, chez l’adulte. L’objectif de ce projet était donc de déterminer la nature et la durée des effets d’un tel traumatisme sur la perception visuelle et sur la stabilité posturale, en évaluant des adultes TCCL et contrôles sur une période d’un an. Les mêmes sujets, exactement, ont participé aux deux expériences, qui ont été menées les mêmes jours pour chacun des sujets. L’impact du TCCL sur la perception visuelle de réseaux sinusoïdaux définis par des attributs de premier et de second ordre a d’abord été étudié. Quinze adultes diagnostiqués TCCL ont été évalués 15 jours, 3 mois et 12 mois après leur traumatisme. Quinze adultes contrôles appariés ont été évalués à des périodes identiques. Des temps de réaction (TR) de détection de clignotement et de discrimination de direction de mouvement ont été mesurés. Les niveaux de contraste des stimuli de premier et de second ordre ont été ajustés pour qu’ils aient une visibilité comparable, et les moyennes, médianes, écarts-types (ET) et écarts interquartiles (EIQ) des TR correspondant aux bonnes réponses ont été calculés. Le niveau de symptômes a également été évalué pour le comparer aux données de TR. De façon générale, les TR des TCCL étaient plus longs et plus variables (plus grands ET et EIQ) que ceux des contrôles. De plus, les TR des TCCL étaient plus courts pour les stimuli de premier ordre que pour ceux de second ordre, et plus variables pour les stimuli de premier ordre que pour ceux de second ordre, dans la condition de discrimination de mouvement. Ces observations se sont répétées au cours des trois sessions. Le niveau de symptômes des TCCL était supérieur à celui des participants contrôles, et malgré une amélioration, cet écart est resté significatif sur la période d’un an qui a suivi le traumatisme. La seconde expérience, elle, était destinée à évaluer l’impact du TCCL sur le contrôle postural. Pour cela, nous avons mesuré l’amplitude d’oscillation posturale dans l’axe antéropostérieur et l’instabilité posturale (au moyen de la vitesse quadratique moyenne (VQM) des oscillations posturales) en position debout, les pieds joints, sur une surface ferme, dans cinq conditions différentes : les yeux fermés, et dans un tunnel virtuel tridimensionnel soit statique, soit oscillant de façon sinusoïdale dans la direction antéropostérieure à trois vitesses différentes. Des mesures d’équilibre dérivées de tests cliniques, le Bruininks-Oseretsky Test of Motor Proficiency 2nd edition (BOT-2) et le Balance Error Scoring System (BESS) ont également été utilisées. Les participants diagnostiqués TCCL présentaient une plus grande instabilité posturale (une plus grande VQM des oscillations posturales) que les participants contrôles 2 semaines et 3 mois après le traumatisme, toutes conditions confondues. Ces troubles de l’équilibre secondaires au TCCL n’étaient plus présents un an après le traumatisme. Ces résultats suggèrent également que les déficits affectant les processus d’intégration visuelle mis en évidence dans la première expérience ont pu contribuer aux troubles de l’équilibre secondaires au TCCL. L’amplitude d’oscillation posturale dans l’axe antéropostérieur de même que les mesures dérivées des tests cliniques d’évaluation de l’équilibre (BOT-2 et BESS) ne se sont pas révélées être des mesures sensibles pour quantifier le déficit postural chez les sujets TCCL. L’association des mesures de TR à la perception des propriétés spécifiques des stimuli s’est révélée être à la fois une méthode de mesure particulièrement sensible aux anomalies visuomotrices secondaires à un TCCL, et un outil précis d’investigation des mécanismes sous-jacents à ces anomalies qui surviennent lorsque le cerveau est exposé à un traumatisme léger. De la même façon, les mesures d’instabilité posturale se sont révélées suffisamment sensibles pour permettre de mesurer les troubles de l’équilibre secondaires à un TCCL. Ainsi, le développement de tests de dépistage basés sur ces résultats et destinés à l’évaluation du TCCL dès ses premières étapes apparaît particulièrement intéressant. Il semble également primordial d’examiner les relations entre de tels déficits et la réalisation d’activités de la vie quotidienne, telles que les activités scolaires, professionnelles ou sportives, pour déterminer les impacts fonctionnels que peuvent avoir ces troubles des fonctions visuomotrice et du contrôle de l’équilibre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To determine whether the localization of retinal glutamate transporters is affected by retinal ischaemia and whether their ability to transport glutamate decreases with the progression of ischemic retinal and optic nerve degeneration. Methods: Retinal ischemia was induced in rats by acutely increasing the intraocular pressure (IOP, 110 mmHg/60 min). Reperfusion was permitted for periods up to 60 days post-ischemia. Functional evaluation was performed by monitoring the pupil light reflexes (PLRs) and electroretinograms (flash, flicker ERG and oscillatory potentials). Glutamate transporter localization and D-aspartate (glutamate analogue) uptake were assessed by immunohistochemistry. Results: Intense immunoreactivity for the retinal glutamate transporters (GLAST, GLT1, EAAC1 and EAAT5) was observed at all time points after the insult, despite severe retinal degeneration. D-aspartate was also normally accumulated in the ischemic retinas. Ten days post-operatively the PLR ratio (ratio = indirect/direct PLR = 34 +/- 7(.)5%) was significantly less than the pre-operative value (pre-op = 76(.)7 +/- 2 (.)6%, p < 0(.)05). However, 25 and 35 days post-operatively PLR ratios did not differ significantly from pre-operative values (44(.)4 +/- 6(.)9 and 53(.)8 +/- 9(.)6%, p > 0(.)05). Forty-five and 60 days post-operatively the PLR ratio declined again and was significantly lower than the pre-operative value (33(.)8 + 8(.)7 and 26(.)2 + 8(.)9%, p < 0(.)05). Statistical analysis revealed that all tested ERG components had significantly higher values at 32, but not at 42 and 58 days post-operatively when compared to the first time point recorded post-operatively (10 days). Conclusions: While retinal glutamate transport is compromised during an acute ischemic insult, consequent retinal recovery and degeneration are not due to a change in the excitatory amino acid transporter localization or D-aspartate (glutamate analogue) uptake. Rat retina and optic nerve are capable of spontaneous, but temporary, functional recovery after an acute ischemic insult. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A foundation principle of professionalism is listening carefully to clients' needs. This paper reviews current studies that have sought to listen to the needs of people with aphasia and their families. The preliminary evidence to date suggests that people with aphasia have goals that cover the bio-psycho-social spectrum but place a lot of importance on functional outcomes such as participation in life's activities, relationships, and personal self-esteem. In contrast, descriptions of current aphasia management practices reflect a predominantly medical model approach that emphasizes impairment-level goals. This paper suggests that a proportion of speech-language pathologists are not truly listening and responding to their clients' needs. This leads to a mismatch between the therapists' and clients' goals in therapy. The concept of person-centred goal-setting is described. This may contribute to greater alignments of goals and better outcomes of rehabilitation. Learning outcomes: As a result of reading this work, the participant will be able to: (a) have knowledge of criticisms of aphasia therapy by people with aphasia; (b) understand the concept of person-centred goal-setting; (c) understand the complexity of mismatched goals between therapist and client. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.