941 resultados para functional feeding group


Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Many farmland bird species have undergone significant declines. It is important to predict the effect of agricultural change on these birds and their response to conservation measures. This requirement could be met by mechanistic models that predict population size from the optimal foraging behaviour and fates of individuals within populations. A key component of these models is the functional response, the relationship between food and competitor density and feeding rate. 2. This paper describes a method for measuring functional responses of farmland birds, and applies this method to a declining farmland bird, the corn bunting Miliaria calandra L. We derive five alternative models to predict the functional responses of farmland birds and parameterize these for corn bunting. We also assess the minimum sample sizes required to predict accurately the functional response. 3. We show that the functional response of corn bunting can be predicted accurately from a few behavioural parameters (searching rate, handling time, vigilance time) that are straightforward to measure in the field. These parameters can be measured more quickly than the alternative of measuring the functional response directly. 4. While corn bunting violated some of the assumptions of Holling's disk equation (model 1 in our study), it still provided the most accurate fit to the observed feeding rates while remaining the most statistically simple model tested. Our other models may be more applicable to other species, or corn bunting feeding in other locations. 5. Although further tests are required, our study shows how functional responses can be predicted, simplifying the development of mechanistic models of farmland bird populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To analyze the differential recruitment of the raphe nuclei during different phases of feeding behavior, rats were subjected to a food restriction schedule (food for 2 h/day, during 15 days). The animals were submitted to different feeding conditions, constituting the experimental groups: search for food (MFS), food ingestion (MFI), satiety (MFSa) and food restriction control (MFC). A baseline condition (BC) group was included as further control. The MFI and MFC groups, which presented greater autonomic and somatic activation, had more FOS-immunoreactive (FOS-IR) neurons. The MFI group presented more labeled cells in the linear (LRN) and dorsal (DRN) nuclei; the MFC group showed more labeling in the median (MRN), pontine (PRN), magnus (NRM) and obscurus (NRO) nuclei; and the MFSa group had more labeled cells in the pallidus (NRP). The BC exhibited the lowest number of reactive cells. The PRN presented the highest percentage of activation in the raphe while the DRN the lowest. Additional experiments revealed few double-labeled (FOS-IR+ 5-HT-IR) cells within the raphe nuclei in the MFI group, suggesting little serotonergic activation in the raphe during food ingestion. These findings suggest a differential recruitment of raphe nuclei during various phases of feeding behavior. Such findings may reflect changes in behavioral state (e.g., food-induced arousal versus sleep) that lead to greater motor activation, and consequently increased FOS expression. While these data are consistent with the idea that the raphe system acts as gain setter for autonomic and somatic activities, the functional complexity of the raphe is not completely understood. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper discusses how interpersonal conflict between IS developers and clients can disrupt IS projects.  It is suggested how potential problems can be avoided by getting the 'soft' factors right which can lead to improvements in information systems development (ISD) processes.  However little is being done in most organisations to review success from this perspective.  Measurement of ISD quality tends to favour the product rather than the human drivers that influence the development of the product.  Several ideas are put forward that can be used to resolve conflict and tp better involve stakeholders in the ISD process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Terrestrial decapods consume a wide variety of plant and animal material. The potential adaptations of carnivorous, omnivorous, and herbivorous terrestrial crustaceans were studied by examining the functional morphology of the gastric mill. Two closely related species from each feeding preference group were examined to identify which features of the mill were due to phylogeny and which were due to adaptation. The morphology of the gastric mill matched the diet well; the gastric mills of the carnivorous species (Geograpsus grayi and Geograpsus crinipes) possessed a blunt, rounded medial tooth and flattened lateral teeth with a longitudinal grinding groove. These features make them well suited to a carnivorous diet of soft animal tissue as well as hard material, such as arthropod exoskeleton. In contrast, the mill of the herbivorous gecarcinids (Gecarcoidea natalis and Discoplax hirtipes) consisted of a medial tooth with sharp transverse ridges and lateral teeth with sharp interlocking cusps and ridges and no grinding surface. These features would efficiently shred fibrous plant material. The morphology of the mill of the omnivorous coenobitids (Coenobita perlatus and Birgus latro) was more generalized toward a mixed diet. However, the mill of B. latro was more adapted to deal with highly nutritious food items, such as nuts and heavily calcified decapods. Its mill possessed lateral teeth with extended ridges, which sat close to the calcified cardiopyloric valve to form a flattened floor. Hard items trapped in the mill would be crushed against this surface by the medial tooth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leaf-cutting ant workers dig underground chambers, for housing their symbiotic fungus, interconnected by a vast quantity of tunnels whose function is to permit the entrance of food (leaves), gaseous exchanges, andmovement of workers, offspring, and the queen. Digging is a task executed by a group of workers, but little is known about the group effect and group-constructed functional structures. Thus, we analyzed the structures formed by worker groups (5, 10, 20, and 40 individuals) of the leaf-cutting ant, Atta sexdens rubropilosa, for 2 days of excavation. The digging arena was the same for the 4 groups, with each group corresponding to a different density. Our results verified a pattern of tunneling by the workers, but no chamber was constructed. The group effect is well known, since the 40-worker group dug significantly more than the groups of 5, 10, and 20. These groups did not differ statistically from each other. Analysis of load/worker verified that workers of the smallest group carried the greatest load. Our paper demonstrates the group effect on the digging of nests, namely, that excavation is proportional to group size, but without emergence of a functional structure such as a chamber.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unlike the muscle protein, alpha-tropomyosin expressed in Escherichia coli does not bind actin, does not exhibit head-to-tail polymerization, and does not inhibit actomyosin ATPase activity in the absence of troponin. The only chemical difference between recombinant and muscle tropomyosins is that the first methionine is not acetylated in the recombinant protein (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). We expressed three fusion tropomyosins in E. coli with 2, 3, and 17 amino acids fused to its amino terminus. Ah three fusions restored actin binding, head-to-tail polymerization, and the capacity to inhibit the actomyosin ATPase to these unacetylated tropomyosins. Unlike larger fusions, the small fusions of 2 and 3 amino acids do not interfere with regulatory function. Therefore the presence of a fused dipeptide at the amino terminus of unacetylated tropomyosin is sufficient to replace the function of the N-acetyl group present in muscle tropomyosin. A structural interpretation for the function of the acetyl group, based on our results and the coiled coil structure of tropomyosin, is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Group B Streptococcus (GBS) three structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus-forming proteins are assembled into high-molecular weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidisciplinary approach including bioinformatics, structural and biochemical studies and in vivo mutagenesis we performed a broad characterization of GBS sortase C. The high resolution X-ray structure of the enzymes revealed that the active site, located into the β-barrel core of the enzyme, is made of the catalytic triad His157-Cys219-Arg228 and covered by a loop, known as the “lid”. We show that the catalytic triad and the predicted N- and C-terminal trans-membrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate-mimicking peptide at least as well as the wild type protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) is a Gram-positive human pathogen representing one of the most common causes of life-threatening bacterial infections such as sepsis and meningitis in neonates. Covalently polymerized pilus-like structures have been discovered in GBS as important virulence factors as well as vaccine candidates. Pili are protein polymers forming long and thin filamentous structures protruding from bacterial cells, mediating adhesion and colonization to host cells. Gram-positive bacteria, including GBS, build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates that are the backbone protein forming the pilus shaft and two ancillary proteins. Also the cell-wall anchoring of the pilus polymers made of covalently linked pilin subunits is mediated by a sortase enzyme. GBS expresses three structurally distinct pilus types (type 1, 2a and 2b). Although the mechanisms of assembly and cell wall anchoring of GBS types 1 and 2a pili have been investigated, those of pilus 2b are not understood until now. Pilus 2b is frequently found in ST-17 strains that are mostly associated with meningitis and high mortality rate especially in infants. In this work the assembly mechanism of GBS pilus type 2b has been elucidated by dissecting through genetic, biochemical and structural studies the role of the two pilus-associated sortases. The most significant findings show that pilus 2b assembly appears “non-canonical”, differing significantly from current pilus assembly models in Gram-positive pathogens. Only sortase-C1 is involved in pilin polymerization, while the sortase-C2 does not act as a pilin polymerase, but it is involved in cell-wall pilus anchoring. Our findings provide new insights into pili biogenesis in Gram-positive bacteria. Moreover, the role of this pilus type during host infection has been investigated. By using a mouse model of meningitis we demonstrated that type 2b pilus contributes to pathogenesis of meningitis in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Education for All Handicapped Children Act of 1975, P.L. 94-142, created a new challenge for the nation's public school systems. During 1982-1983, a national study, called the "Collaborative Study of Children with Special Needs", was conducted in 5 metropolitan school districts to evaluate the effectiveness of education and health care services of children in kindergarten to 6th grade being provided under P.L. 94-142 programs. This dissertation (the Substudy) was undertaken to augment the findings of the Collaborative Study. The purpose of this study was to develop a database to provide descriptive information on the demographic, service and health characteristics of a small group of 3 and 4 year old handicapped children served by the Houston Independent School District (HISD) during 1982-1983.^ The study involved a stratified sample of 105 three and four year old children divided into 3 groups according to type of handicapping condition.^ The results of the study gave a clearer picture of the demographic characteristics of these Pre-K children. Specifically, sex ratio was approximately one, lower than the national norm. Family and socioeconomic characteristics were assessed.^ The study used an independence/dependence index composed of 11 items on the parent questionnaire to assess the level of functional independence of each child. An association was found between index scores and parent-reported effects of the child on family activity. Parents who said that their child's condition had affected the family's job situation, housing accomodations, vacation plans, marriage, choice of friends and social activities were also more likely to report less independence in the child. In addition, many of the Substudy children had extensive care-taking needs reflected in specific components of the index such as dressing, feeding, toileting or moving about the house.^ In general the results of the Pre-K Substudy indicate that at the early childhood level, the HISD special education program is functioning well in most areas and that parents are very satisfied with the program. (Abstract shortened with permission of author.)^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the Godthabsfjord (64°N, 51°W) SW Greenland, through a combination of fieldwork and laboratory experiments. Krill biomass was highest in the middle fjord and inner fjord, whereas no krill was found offshore. The dominating species Thysanoessa raschii revealed a type III functional response when fed with the diatom Thalassiosira weissflogii. At food saturation, T. raschii exhibited a daily ration of 1% body C/d. Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 µm, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory behaviour of krill will concentrate and elevate the grazing in specific areas of the euphotic zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information on the functional traits was gathered for the most commonly-sampled copepod species of the Mediterranean Sea. Our database includes 191 species described by 7 traits encompassing diverse ecological functions: minimal and maximal body length (mm), trophic group (Omnivore/Carnivore/Herbivore/Detritivore), feeding type (Cruise-feeding/Filter-feeding/Ambush-feeding), spawning strategy (Sac-spawner/Free-spawner), diel vertical migration (Non-migrant/Weak-migrant/Strong-migrant) and vertical habitat (prefered depth layer). Using cluster analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DELLA proteins are the master negative regulators in gibberellin (GA) signaling acting in the nucleus as transcriptional regulators. The current view of DELLA action indicates that their activity relies on the physical interaction with transcription factors (TFs). Therefore, the identification of TFs through which DELLAs regulate GA responses is key to understanding these responses from a mechanistic point of view. Here, we have determined the TF interactome of the Arabidopsis (Arabidopsis thaliana) DELLA protein GIBBERELLIN INSENSITIVE and screened a collection of conditional TF overexpressors in search of those that alter GA sensitivity. As a result, we have found RELATED TO APETALA2.3, an ethylene-induced TF belonging to the group VII ETHYLENE RESPONSE FACTOR of the APETALA2/ethylene responsive element binding protein superfamily, as a DELLA interactor with physiological relevance in the context of apical hook development. The combination of transactivation assays and chromatin immunoprecipitation indicates that the interaction with GIBBERELLIN INSENSITIVE impairs the activity of RELATED TO APETALA2.3 on the target promoters. This mechanism represents a unique node in the cross regulation between the GA and ethylene signaling pathways controlling differential growth during apical hook development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy (NALD), are autosomal recessive diseases caused by defects in peroxisome assembly, for which at least 10 complementation groups have been reported. We have isolated a human PEX1 cDNA (HsPEX1) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary (CHO) cell line, ZP107, transformed with peroxisome targeting signal type 1-tagged “enhanced” green fluorescent protein. This cDNA encodes a hydrophilic protein (Pex1p) comprising 1,283 amino acids, with high homology to the AAA-type ATPase family. A stable transformant of ZP107 with HsPEX1 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX1 expression restored peroxisomal protein import in fibroblasts from three patients with ZS and NALD of complementation group I (CG-I), which is the highest-incidence PBD. A CG-I ZS patient (PBDE-04) possessed compound heterozygous, inactivating mutations: a missense point mutation resulting in Leu-664 → Pro and a deletion of the sequence from Gly-634 to His-690 presumably caused by missplicing (splice site mutation). Both PBDE-04 PEX1 cDNAs were defective in peroxisome-restoring activity when expressed in the patient fibroblasts as well as in ZP107 cells. These results demonstrate that PEX1 is the causative gene for CG-I peroxisomal disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

LEF-1 (lymphoid enhancer-binding factor 1) is a cell type-specific member of the family of high mobility group (HMG) domain proteins that recognizes a specific nucleotide sequence in the T cell receptor (TCR) α enhancer. In this study, we extend the analysis of the DNA-binding properties of LEF-1 and examine their contributions to the regulation of gene expression. We find that LEF-1, like nonspecific HMG-domain proteins, can interact with irregular DNA structures such as four-way junctions, albeit with lower efficiency than with specific duplex DNA. We also show by a phasing analysis that the LEF-induced DNA bend is directed toward the major groove. In addition, we find that the interaction of LEF-1 with a specific binding site in circular DNA changes the linking number of DNA and unwinds the double helix. Finally, we identified two nucleotides in the LEF-1-binding site that are important for protein-induced DNA bending. Mutations of these nucleotides decrease both the extent of DNA bending and the transactivation of the TCRα enhancer by LEF-1, suggesting a contribution of protein-induced DNA bending to the function of TCRα enhancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) is caused by a defect in nucleotide excision repair. Patients in the complementation group E (XP-E) have the mildest form of the disease and the highest level of residual repair activity. About 20% of the cell strains derived from XP-E patients lack a damaged DNA-binding protein (DDB) activity that binds to ultraviolet-induced (6-4) photoproducts with high affinity. We report here that cell-free extracts prepared from XP-E cell strains that either lacked or contained DDB activity were severely defective in excising DNA damage including (6-4) photoproducts. However, this excision activity defect was not restored by addition of purified DDB that, in fact, inhibited removal of (6-4) photoproducts by the human excision nuclease reconstituted from purified proteins. Extensive purification of correcting activity from HeLa cells revealed that the correcting activity is inseparable from the human replication/repair protein A [RPA (also known as human single stranded DNA binding protein, HSSB)]. Indeed, supplementing XP-E extracts with recombinant human RPA purified from Escherichia coli restored excision activity. However, no mutation was found in the genes encoding the three subunits of RPA in an XP-E (DDB-) cell line. It is concluded that RPA functionally complements XP-E extracts in vitro, but it is not genetically altered in XP-E patients.