995 resultados para frequency-resolved optical gating
Resumo:
Typically linear optical quantum computing (LOQC) models assume that all input photons are completely indistinguishable. In practice there will inevitably be nonidealities associated with the photons and the experimental setup which will introduce a degree of distinguishability between photons. We consider a nondeterministic optical controlled-NOT gate, a fundamental LOQC gate, and examine the effect of temporal and spectral distinguishability on its operation. We also consider the effect of utilizing nonideal photon counters, which have finite bandwidth and time response.
Resumo:
The multimode operation of an optical parametric oscillator (OPO) operating below threshold is calculated. We predict that squeezing can be generated in a comb that is limited only by the phase matching bandwidth of the OPO. Effects of technical noise on the squeezing spectrum are investigated. It is shown that maximal squeezing can be obtained at high frequency even in the presence of seed laser noise and cavity length fluctuations. Furthermore the spectrum obtained by detuning the laser frequency off OPO cavity resonance is calculated.
Resumo:
We propose techniques of optical frequency conversion, pulse compression and signal copying based on a combination of cross-phase modulation using triangular pump pulses and subsequent propagation in a dispersive medium.
Resumo:
A variety of methods have been reviewed for obtaining parallel or perpendicular alignment in liquid-crystal cells. Some of these methods have been selected and developed and were used in polarised spectroscopy, dielectric and electro-optic studies. Also, novel dielectric and electro-optic cells were constructed for use over a range of temperature. Dielectric response of thin layers of E7 and E8 (eutectic mixture liquid-crystals) have been measured in the frequency range (12 Hz-100 kHz) and over a range of temperature (183-337K). Dielectric spectra were also obtained for supercooled E7 and E8 in the Hz and kHz range. When the measuring electric field was parallel to the nematic director, one loss peak (low-frequency relaxation process) was observed for E7 and for E8, that exhibits a Debye-type behaviour in the supercooled systems. When the measuring electric field was perpendicular to the nematic director, two resolved dielectric processes have been observed. The phase transitions, effective molecular polarisabilities, anisotropy of polarisabilities and order parameters of three liquid crystal homologs (5CB, 6CB, and 7CB), 60CB and three eutectic nematic mixtures E7, E8, and E607 were calculated using optical and density data measured at several temperatures. The order parameters calculated using the different methods of Vuks, Neugebauer, Saupe-Maier, and Palffy-Muhoray are nearly the same for the liquid crystals considered in the present study. Also, the interrelationship between density and refractive index and the molecular structure of these liquid crystals were established. Accurate dielectric and dipole results of a range of liquid-crystal forming molecules at several temperatures have reported. The role of the cyano-end group, biphenyl core, and flexible tail in molecular association, were investigated using the dielectric method for some molecules which have a structural relationship to the nematogens. Analysis of the dielectric data for solution of the liquid-crystals indicated a high molecular association, comparable to that observed in the nematic or isotropic phases. Electro-optic Kerr effect were investigated for some alkyl cyanobiphenyls, their nematic mixtures and the eutectic mixture liquid-crystals E7 and E8 in the isotropic phase and solution. The Kerr constant of these liquid crystals found to be very high at the nematic-isotropic transition temperatures as the molecules are expected to be highly ordered close to phase transition temperatures. Dynamic Kerr effect behaviour and transient molecular reorientation were also observed in thin layers of some alkyl cyanobiphenyls. Dichroic ratio R and order parameters of solutions containing some azo and anthraquinone dyes in the nematic solvent (E7 and E8), were investigated by the measurement of the intensity of the absorption bands in the visible region of parallel aligned samples. The effective factors on the dichroic ratio of the dyes dissolved in the nematic solvents were determined and discussed.
Resumo:
We describe a technique applicable to interferometric systems illuminated by a laser diode, whereby the optical path difference is recovered by means of sinusoidal modulation of the laser emission frequency.
Resumo:
Simultaneous conversion of the two orthogonal phase components of an optical input to different output frequencies has been demonstrated by simulation and experiment. A single stage of four-wave mixing between the input signal and four pumps derived from a frequency comb was employed. The nonlinear device was a semiconductor optical amplifier, which provided overall signal gain and sufficient contrast for phase sensitive signal processing. The decomposition of a quadrature phase-shift keyed signal into a pair of binary phase-shift keyed outputs at different frequencies was also demonstrated by simulation.
Resumo:
We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.
Resumo:
We propose techniques of optical frequency conversion, pulse compression and signal copying based on a combination of cross-phase modulation using triangular pump pulses and subsequent propagation in a dispersive medium.
Resumo:
We report for the first time an ultra-stable optical-carrier dissemination technique for transmission over a 20km unidirectional fibre link. The optical-linewidth of the recovered carrier matches closely that of the original carrier. © 2014 OSA.
Resumo:
We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.
Resumo:
The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.
Resumo:
We examine data transmission during the interval immediately after wavelength switching of a tunable laser and, through simulation, we demonstrate how choice of modulation format can improve the efficacy of an optical burst/packet switched network. © 2013 Optical Society of America.