981 resultados para frequency response
Resumo:
En aquest projecte s’han dissenyat i simulat diferents models de tags RFID per a la banda UHF sobre diferents classes de substrats i tintes conductores amb l’objectiu d’estudiar la viabilitat de la tecnologia de Printed Electronics per a la seva d’implementació física. A partir de dues configuracions ja existents a la literatura, aquestes etiquetes RFID s’han modelat electromagnèticament mitjançant el software ADS i s’ha simulat la seva resposta freqüencial. En segon terme, a fi d’avaluar el seu rendiment, també s’ha representat el read range d’aquests tags RFID en funció d’aquestes tintes conductores i substrats. Posteriorment, s’han realitzat diferents proves de fabricació mitjançant un mètode basat en la serigrafia, així com d’obtenció experimental de la seva distància de lectura. Finalment, en base als resultats obtinguts s’ha pogut concloure que és viable realitzar tags RFID segons aquesta tècnica d’impressió, però a falta d’una verificació experimental únicament a nivell de simulació.
Resumo:
One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.
Resumo:
This paper presents the kinematic study of robotic biped locomotion systems. The main purpose is to determine the kinematic characteristics and the system performance during walking. For that objective, the prescribed motion of the biped is completely characterised in terms of five locomotion variables: step length, hip height, maximum hip ripple, maximum foot clearance and link lengths. In this work, we propose four methods to quantitatively measure the performance of the walking robot: energy analysis, perturbation analysis, lowpass frequency response and locomobility measure. These performance measures are discussed and compared in determining the robustness and effectiveness of the resulting locomotion.
Resumo:
This paper examines two passive techniques for vibration reduction in mechanical systems: the first one is based on dynamic vibration absorbers (DVAs) and the second uses resonant circuit shunted (RCS) piezoceramics. Genetic algorithms are used to determine the optimal design parameters with respect to performance indexes, which are associated with the dynamical behavior of the system over selected frequency bands. The calculation of the frequency response functions (FRFs) of the composite structure (primary system + DVAs) is performed through a substructure coupling technique. A modal technique is used to determine the frequency response function of the structure containing shunted piezoceramics which are bonded to the primary structure. The use of both techniques simultaneously on the same structure is investigated. The methodology developed is illustrated by numerical applications in which the primary structure is represented by simple Euler-Bernoulli beams. However, the design aspects of vibration control devices presented in this paper can be extended to more complex structures.
Resumo:
This paper applies the Multi-Harmonic Nonlinear Receptance Coupling Approach (MUHANORCA) (Ferreira 1998) to evaluate the frequency response characteristics of a beam which is clamped at one end and supported at the other end by a nonlinear cubic stiffness joint. In order to apply the substructure coupling technique, the problem was characterised by coupling a clamped linear beam with a nonlinear cubic stiffness joint. The experimental results were obtained by a sinusoidal excitation with a special force control algorithm where the level of the fundamental force is kept constant and the level of the harmonics is kept zero for all the frequencies measured.
Resumo:
D-luokan vahvistimien etu perinteisiin A- tai AB-luokan vahvistimiin nähden on niitten korkea hyötysuhde ja pieni koko. Lisäksi ne ovat edullisia ja niihin voidaan asentaa pienemmät jäähdytyslevyt kuin perinteisiin vahvistimiin korkean hyötysuhteen ansiosta. Tässä tutkimuksessa asennetaan Peavey Solo –kitaravahvistimen pääteasteena toimivan AB-luokan päätevahvistimen tilalle tehokkaampi ja uudempaa vahvistinluokkaa edustava D-luokan vahvistin. Tutkimuksessa selvitetään, miten D-luokan vahvistimella toteutettu kytkentä toimii verrattuna alkuperäiseen kytkentään tutkimalla kitaravahvistimelle tyypillisiä sähköisiä ominaisuuksia. Työ toteutetaan mittauksin. Koska työssä olevissa kytkennöissä on jännitteisiä osia, on siinä perehdyttävä sähköturvallisuuteen. D-luokan vahvistin asettaa tietyt sähkötekniset kestävyysvaatimukset kytkennän teholähteelle ja kaiutinelementille, jolloin työssä paneudutaan myös niiden valintaan. D-luokan vahvistimeen päivitetyn kytkennän tuottamat äänenpainetasot olivat valtaosassa mittauksia suuremmat kuin alkuperäisellä kytkennällä. Äänenpainetasojen mittaustilanteissa myös kuormalle syötetyt tehot olivat suuremmat päivitetyllä kytkennällä verrattuna alkuperäiseen. Suurin päivitetyn kytkennän kuorman teho 72,72 W saavutettiin, kun kaiutinelementin yli oli 24,12 V:n jännitteen tehollisarvo ja kuorman teho oli noin 36 kertaa suurempi kuin alkuperäisellä kytkennällä. D-luokan vahvistimen mitatut harmonisen särön arvot ovat huomattavasti pienempiä kuin alkuperäisellä vahvistimella. Muokkaamattoman vahvistimen mitatusta sähköisestä taajuusvasteeesta nähdään, että alkuperäinen vahvistin korostaa tiettyjä taajuuksia, kun D-luokan vahvistimen taajuusvaste on sen sijaan likimain tasainen. Akustinen taajuusvaste ei ole niin tasainen D-luokan vahvistimeen päivitetyllä kytkennällä kuin alkuperäisellä kytkennällä ja sillä on myös kapeampi taajuusalue. Jos päivitetyn kytkennän sointia haluttaisiin parantaa, pitäisi tutkia lisää akustiseen taajuusvasteeseen vaikuttavia asioita.
Resumo:
The purpose of this correlational study was to investigate the relationship between the degree of self-directed learning readiness and stress for level one nursing students and level two nursing students. One hundred female nursing students participated in the study who were attending an Ontario Community College. Data were collected from the main nursing campus and the satellite nursing campus using the random sample method. Instruments used were said to be valid and reliable for testing self-directed learning readiness and stress respectively. Data were analyzed using frequency response to each item, means and standard deviation, and the Pearson product correlation between selfdirected learning readiness and stress. The results of the study show that there is a difference in the relationship between the degree of self-directed learning readiness and stress between the level one nursing students and the level two nursing students. Such results will be of particular interest to nursing instructors and administrators when planning for delivery of programs to such students.
Resumo:
Poly(methyl)methacrylate was made photoconducting by molecular doping and the photoconductivity was investigated using modulated photocurrent technique . Low-temperature current-voltage measurements showed that the transport mechanism was thermally activated hopping. An experimental investigation of the photoconductivity action spectrum along with theoretical calculation enabled an estimation of the diffusion coefficient of the material. The presence of states with a distribution of lifetimes could be understood from the frequency response of the photocurrent . The photocurrent was due to the field-assisted dissociation of these states
Resumo:
Poly(methyl)methacrylate was made photoconducting by molecular doping and the photoconductivity was investigated using modulated photocurrent technique . Low-temperature current-voltage measurements showed that the transport mechanism was thermally activated hopping. An experimental investigation of the photoconductivity action spectrum along with theoretical calculation enabled an estimation of the diffusion coefficient of the material. The presence of states with a distribution of lifetimes could be understood from the frequency response of the photocurrent . The photocurrent was due to the field-assisted dissociation of these states.
Resumo:
This thesis work has mainly concentrated on the investigation of the ,optical and thermal properties of binary semiconducting chalcogenide glasses belonging to the AivB¥5x and AZBXEX families. The technique used for these studies is a relatively new one namely, the photoacoustic (PA) technique. This technique is based on the detection of acoustic signal produced in an enclosed volume when the sample is irradiated by an intensity modulated radiation. The signal produced depends upon the optical properties of the sample, and the thermal properties of the sample, backing material and the surrounding gas. For the present studies an efficient signal beam gas-microphone PA spectrometer, consisting of a high power Xenon lamp, monochromator, light beam chopper, PA cell with microphone and lock-in amplifier, has been set up. Two PA cells have been fabricated: one for room temperature measurements and another for measurements at high temperatures. With the high temperature PA cell measurements can be taken upto 250°C. Provisions are incorporated. in both the cells to change the volume and to use different backing materials for the sample. The cells have been calibrated by measuring the frequency response of the cells using carbon black as the sample
Resumo:
Nanofilm deposits of TiO2 nanoparticle phytates are formed on gold electrode surfaces by 'directed assembly' methods. Alternate exposure of a 3-mercapto-propionic acid modified gold surface to (i) a TiO2 sol and (ii) an aqueous phytic acid solution (pH 3) results in layer-by-layer formation of a mesoporous film. Ru(NH3)(6)(3+) is shown to strongly adsorb/accumulate into the mesoporous structure whilst remaining electrochemically active. Scanning the electrode potential into a sufficiently negative potential range allows the Ru(NH3)(6)(3+) complex to be reduced to Ru(NH3)(6)(2+) which undergoes immediate desorption. When applied to a gold coated quartz crystal microbalance (QCM) sensor, electrochemically driven adsorption and desorption processes in the mesoporous structure become directly detectable as a frequency response, which corresponds directly to a mass or density change in the membrane. The frequency response (at least for thin films) is proportional to the thickness of the mass-responsive film, which suggests good mechanical coupling between electrode and film. Based on this observation, a method for the amplified QCM detection of small mass/density changes is proposed by conducting measurements in rigid mesoporous structures. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Microcontroller-based peak current mode control of a buck converter is investigated. The new solution uses a discrete time controller with digital slope compensation. This is implemented using only a single-chip microcontroller to achieve desirable cycle-by-cycle peak current limiting. The digital controller is implemented as a two-pole, two-zero linear difference equation designed using a continuous time model of the buck converter and a discrete time transform. Subharmonic oscillations are removed with digital slope compensation using a discrete staircase ramp. A 16 W hardware implementation directly compares analog and digital control. Frequency response measurements are taken and it is shown that the crossover frequency and expected phase margin of the digital control system match that of its analog counterpart.
Resumo:
Subdermal magnetic implants originated as an art form in the world of body modification. To date an in depth scientific analysis of the benefits of this implant has yet to be established. This research explores the concept of sensory extension of the tactile sense utilising this form of implantation. This relatively simple procedure enables the tactile sense to respond to static and alternating magnetic fields. This is not to say that the underlying biology of the system has changed; i.e. the concept does not increase our tactile frequency response range or sensitivity to pressure, but now does invoke a perceptual response to a stimulus that is not innately available to humans. Within this research two social surveys have been conducted in order to ascertain one, the social acceptance of the general notion of human enhancement, and two the perceptual experiences of individuals with the magnetic implants themselves. In terms of acceptance to the notion of sensory improvement (via implantation) ~39% of the general population questioned responded positively with a further ~25% of the respondents answering with the indecisive response. Thus with careful dissemination a large proportion of individuals may adopt this technology much like this if it were to become available for consumers. Interestingly of the responses collected from the magnetic implants survey ~60% of the respondents actually underwent the implant for magnetic vision purposes. The main contribution of this research however comes from a series of psychophysical testing. In which 7 subjects with subdermal magnetic implants, were cross compared with 7 subjects that had similar magnets superficially attached to their dermis. The experimentation examined multiple psychometric thresholds of the candidates including intensity, frequency and temporal. Whilst relatively simple, the experimental setup for the perceptual experimentation conducted was novel in that custom hardware and protocols were created in order to determine the subjective thresholds of the individuals. Abstract iv The overall purpose of this research is to utilise this concept in high stress scenarios, such as driving or piloting; whereby alerts and warnings could be relayed to an operator without intruding upon their other (typically overloaded) exterior senses (i.e. the auditory and visual senses). Hence each of the thresholding experiments were designed with the intention of utilising the results in the design of signals for information transfer. The findings from the study show that the implanted group of subjects significantly outperformed the superficial group in the absolute intensity threshold experiment, i.e. the implanted group required significantly less force than the superficial group in order to perceive the stimulus. The results for the frequency difference threshold showed no significant difference in the two groups tested. Interestingly however at low frequencies, i.e. 20 and 50 Hz, the ability of the subjects tested to discriminate frequencies significantly increased with more complex waveforms i.e. square and sawtooth, when compared against the typically used sinewave. Furthermore a novel protocol for establishing the temporal gap detection threshold during a temporal numerosity study has been established in this thesis. This experiment measured the subjects’ capability to correctly determine the number of concatenated signals presented to them whilst the time between the signals, referred to as pulses, tended to zero. A significant finding was that when altering the length of, the frequency of, and the number of cycles of the pulses, the time between pulses for correct recognition altered. This finding will ultimately aid in the design of the tactile alerts for this method of information transfer. Preliminary development work for the use of this method of input to the body, in an automotive scenario, is also presented within this thesis in the form of a driving simulation. The overall goal of which is to present warning alerts to a driver, such as rear-to-end collision, or excessive speeds on roads, in order to prevent incidents and penalties from occurring. Discussion on the broader utility of this implant has been presented, reflecting on its potential use as a basis for vibrotactile, and sensory substitution, devices. This discussion furthers with postulations on its use as a human machine interface, as well as how a similar implant could be used within the ear as a hearing aid device.
Resumo:
This paper investigates the value of a generic storage system within two GB market mechanisms and one ancillary service provision: the wholesale power market, the Balancing Mechanism and Firm Frequency Response (FFR). Three models are evaluated under perfect foresight and fixed horizon which is subsequently extended to explore the impact of a longer foresight on market revenues. The results show that comparatively, the balancing mechanism represents the highest source of potential revenues followed by the wholesale power market and Firm Frequency Response respectively. Longer horizons show diminishing returns, with the 1 day horizon providing the vast majority of total revenues. However storage power capacity utilization benefits from such long horizons. These results could imply that short horizons are very effective in capturing revenues in both the wholesale market and balancing mechanism whereas sizing of a storage system should take into consideration horizon foresight and accuracy for greater benefit.
Resumo:
The bidimensional periodic structures called frequency selective surfaces have been well investigated because of their filtering properties. Similar to the filters that work at the traditional radiofrequency band, such structures can behave as band-stop or pass-band filters, depending on the elements of the array (patch or aperture, respectively) and can be used for a variety of applications, such as: radomes, dichroic reflectors, waveguide filters, artificial magnetic conductors, microwave absorbers etc. To provide high-performance filtering properties at microwave bands, electromagnetic engineers have investigated various types of periodic structures: reconfigurable frequency selective screens, multilayered selective filters, as well as periodic arrays printed on anisotropic dielectric substrates and composed by fractal elements. In general, there is no closed form solution directly from a given desired frequency response to a corresponding device; thus, the analysis of its scattering characteristics requires the application of rigorous full-wave techniques. Besides that, due to the computational complexity of using a full-wave simulator to evaluate the frequency selective surface scattering variables, many electromagnetic engineers still use trial-and-error process until to achieve a given design criterion. As this procedure is very laborious and human dependent, optimization techniques are required to design practical periodic structures with desired filter specifications. Some authors have been employed neural networks and natural optimization algorithms, such as the genetic algorithms and the particle swarm optimization for the frequency selective surface design and optimization. This work has as objective the accomplishment of a rigorous study about the electromagnetic behavior of the periodic structures, enabling the design of efficient devices applied to microwave band. For this, artificial neural networks are used together with natural optimization techniques, allowing the accurate and efficient investigation of various types of frequency selective surfaces, in a simple and fast manner, becoming a powerful tool for the design and optimization of such structures