982 resultados para free text keystroke dynamics
Resumo:
Abstract:A serological survey for antibodies against Leptospira interrogans, Brucella abortus, and Chlamydophila abortus was conducted in 21 clinically healthy, free-ranging giant ant- eaters (Myrmecophaga tridactyla) from Parque Nacional das Emas (Goiás State, Brazil; n=6), Parque Nacional da Serra da Canastra (Minas Gerais State, Brazil; n=9), and RPPN SESC Pantanal (Mato Grosso State, Brazil; n=6) between July 2001 and September 2006. Sera were screened for antibodies against 22 serovars of Leptospira interrogans with a microscopic agglutination test. Twelve tested positive for L. interrogansserovars sentot (n=5 in PN Emas, n=2 in PN Serra da Canastra), butembo (n=2 in PN Serra da Canastra), autumnalis, bataviae, and shermani/icterohaemorrhagiae(n=1 each in SESC Pantanal)One adult female tested positive for B. abortus with the buffered plate antigen test. All sera were negative for C. abortususing the complement fixation text. This is the first report of pathogens that may interfere with the reproduction and population dynamics of free-ranging giant anteaters.
Resumo:
The dynamics of the tree community and 30 tree populations were examined in an area of tropical semideciduous forest located on the margin of the Rio Grande, SE Brazil, based on surveys done in 1990 and 1997 in three 0.18 ha plots. The main purpose was to assess whether variations in dynamics were related to topography and the effects of a catastrophic flood in 1992. Rates of mortality and recruitment of trees and gain and loss of basal area in two topographic sites, lower (flooded) and upper (non-flooded), were obtained. Projected trajectories of mean and accelerated growth in diameter were obtained for each species. In both topographic sites, mortality rates surpassed recruitment rates, gain rates of basal area surpassed loss rates, and size distributions changed, with declining proportions of smaller trees. These overall changes were possibly related to increased underground water supply after the 1992 flood as well as to a c. 250-year-old process of primary succession on abandoned gold mines. Possible effects of the 1992 flood showed up in the higher proportions of dead trees in the flooded sites and faster growth rates in the flood-free sites. Species of different regeneration guilds showed particular trends with respect to their demographic changes and diameter growth patterns. Nevertheless, patterns of population dynamics differed between topographic sites for only two species.
Resumo:
The experiment was carried out in pots in a glasshouse, with one plant per pot and nine repetitions per treatment. The treatments consisted of free or restricted leaves, submited to 90-100% or 60-70% soil field capacity (FC). Only independent effects of water availability or leaf movement were observed on yield components. Plants under well-watered conditions and with freely orienting leaves were taller, and had a larger number of ramifications. The greater development favored the setting of a higher number of inflorescences per plant in these treatments. This behavior resulted in a high number of flowers, green and mature legumes per plant, thus resulting in high seed production which was the most evident response to water availability. Although individual seed weight was higher in the water stress treatment, total seed production was higher for well-watered plants, with no statistically significant effect of leaf movements.
Resumo:
The development of eutrophication in river systems is poorly understood given the complex relationship between fixed plants, algae, hydrodynamics, water chemistry and solar radiation. However there is a pressing need to understand the relationship between the ecological status of rivers and the controlling environmental factors to help the reasoned implementation of the Water Framework Directive and Catchment Sensitive Farming in the UK. This research aims to create a dynamic, process-based, mathematical in-stream model to simulate the growth and competition of different vegetation types (macrophytes, phytoplankton and benthic algae) in rivers. The model, applied to the River Frome (Dorset, UK), captured well the seasonality of simulated vegetation types (suspended algae, macrophytes, epiphytes, sediment biofilm). Macrophyte results showed that local knowledge is important for explaining unusual changes in biomass. Fixed algae simulations indicated the need for the more detailed representation of various herbivorous grazer groups, however this would increase the model complexity, the number of model parameters and the required observation data to better define the model. The model results also highlighted that simulating only phytoplankton is insufficient in river systems, because the majority of the suspended algae have benthic origin in short retention time rivers. Therefore, there is a need for modelling tools that link the benthic and free-floating habitats.
Resumo:
In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer of molecules, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards equilibrium, and the expected surface tension is re-established. We found that the system relaxation consists of three distinct stages. First, the mechanical balance is quickly re-established. During this process the notion of surface tension is meaningless. In the second stage, the surface tension equilibrates, and the density profile broadens to a value which we call “intrinsic” interfacial width. During the third stage, the density profile continues to broaden due to capillary wave excitations, which does not however affect the surface tension.We have observed this scenario for monatomic Lennard-Jones (LJ) liquid as well as for binary LJ mixtures at different temperatures, monitoring a wide range of physical observables.
Resumo:
The concept of a slowest invariant manifold is investigated for the five-component model of Lorenz under conservative dynamics. It is shown that Lorenz's model is a two-degree-of-freedom canonical Hamiltonian system, consisting of a nonlinear vorticity-triad oscillator coupled to a linear gravity wave oscillator, whose solutions consist of regular and chaotic orbits. When either the Rossby number or the rotational Froude number is small, there is a formal separation of timescales, and one can speak of fast and slow motion. In the same regime, the coupling is weak, and the Kolmogorov–Arnold-Moser theorem is shown to apply. The chaotic orbits are inherently unbalanced and are confined to regions sandwiched between invariant tori consisting of quasi-periodic regular orbits. The regular orbits generally contain free fast motion, but a slowest invariant manifold may be geometrically defined as the set of all slow cores of invariant tori (defined by zero fast action) that are smoothly related to such cores in the uncoupled system. This slowest invariant manifold is not global; in fact, its structure is fractal; but it is of nearly full measure in the limit of weak coupling. It is also nonlinearly stable. As the coupling increases, the slowest invariant manifold shrinks until it disappears altogether. The results clarify previous definitions of a slowest invariant manifold and highlight the ambiguity in the definition of “slowness.” An asymptotic procedure, analogous to standard initialization techniques, is found to yield nonzero free fast motion even when the core solutions contain none. A hierarchy of Hamiltonian balanced models preserving the symmetries in the original low-order model is formulated; these models are compared with classic balanced models, asymptotically initialized solutions of the full system and the slowest invariant manifold defined by the core solutions. The analysis suggests that for sufficiently small Rossby or rotational Froude numbers, a stable slowest invariant manifold can be defined for this system, which has zero free gravity wave activity, but it cannot be defined everywhere. The implications of the results for more complex systems are discussed.
Resumo:
Observational evidence is scarce concerning the distribution of plant pathogen population sizes or densities as a function of time-scale or spatial scale. For wild pathosystems we can only get indirect evidence from evolutionary patterns and the consequences of biological invasions.We have little or no evidence bearing on extermination of hosts by pathogens, or successful escape of a host from a pathogen. Evidence over the last couple of centuries from crops suggest that the abundance of particular pathogens in the spectrum affecting a given host can vary hugely on decadal timescales. However, this may be an artefact of domestication and intensive cultivation. Host-pathogen dynamics can be formulated mathematically fairly easily–for example as SIR-type differential equation or difference equation models, and this has been the (successful) focus of recent work in crops. “Long-term” is then discussed in terms of the time taken to relax from a perturbation to the asymptotic state. However, both host and pathogen dynamics are driven by environmental factors as well as their mutual interactions, and both host and pathogen co-evolve, and evolve in response to external factors. We have virtually no information about the importance and natural role of higher trophic levels (hyperpathogens) and competitors, but they could also induce long-scale fluctuations in the abundance of pathogens on particular hosts. In wild pathosystems the host distribution cannot be modelled as either a uniform density or even a uniform distribution of fields (which could then be treated as individuals). Patterns of short term density-dependence and the detail of host distribution are therefore critical to long-term dynamics. Host density distributions are not usually scale-free, but are rarely uniform or clearly structured on a single scale. In a (multiply structured) metapopulation with coevolution and external disturbances it could well be the case that the time required to attain equilibrium (if it exists) based on conditions stable over a specified time-scale is longer than that time-scale. Alternatively, local equilibria may be reached fairly rapidly following perturbations but the meta-population equilibrium be attained very slowly. In either case, meta-stability on various time-scales is a more relevant than equilibrium concepts in explaining observed patterns.
Resumo:
In this paper we search for the dynamics of a simple portal structure in the free and in the periodic excitation cases. By using the Center Manifold approach and Averaging Method, we obtain results on both stability and bifurcation of equilibrium points and periodic orbits. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the nonlinear oscillations in a free surface of a fluid in a cylinder tank excited by non-ideal power source, an electric motor with limited power supply. We study the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Additionally, the dynamics of parametrically excited surface waves in the tank can reveal new characteristics of the system. The fluid-dynamic system is modeled in such way as to obtain a nonlinear differential equation system. Numerical experiments are carried out to find the regions of chaotic solutions. Simulation results are presented as phase-portrait diagrams characterizing the resonant vibrations of free fluid surface and the existence of several types of regular and chaotic attractors. We also describe the energy transfer in the interaction process between the hydrodynamic system and the electric motor. Copyright © 2011 by ASME.
Resumo:
Amino acids play fundamental roles in plant morphogenesis. Among sources of organic nitrogen (N), glutamine has frequently been used during the establishment and maintenance of cell and tissue cultures. The aim of this study was analyse endogenous levels of glutamine during somatic and zygotic embryogenesis of Acca sellowiana (Feijoa or pineapple guava). The in vitro absorption of H-3-labelled glutamine was investigated. Zygotic embryos and embryogenic cultures (EC) were evaluated at 30 d and 70 d after explant inoculation onto the medium. Endogenous levels of glutamine were similar during zygotic and somatic embryogenesis, and showed a gradual decline until day-24 in culture. The highest rates of H-3-labelled glutamine uptake were observed during the first 2 h of incubation, resulting in values of 6.29 mu mol g(-1) fresh weight (FW) for zygotic embryos, 14.43 mu mol g(-1) FW for EC after 30 d, and 13.85 mu mol g(-1) FW for EC after 70 d. These results showed that the decreased levels of glutamine observed during the initial phase of development may be related to de novo protein synthesis and mobilisation during embryo maturation. The absorption of glutamine in the first 2 h of incubation also emphasises its involvement as an important source of N during morphogenesis of somatic and zygotic embryos.
Resumo:
The lower intestine of adult mammals is densely colonized with nonpathogenic (commensal) microbes. Gut bacteria induce protective immune responses, which ensure host-microbial mutualism. The continuous presence of commensal intestinal bacteria has made it difficult to study mucosal immune dynamics. Here, we report a reversible germ-free colonization system in mice that is independent of diet or antibiotic manipulation. A slow (more than 14 days) onset of a long-lived (half-life over 16 weeks), highly specific anticommensal immunoglobulin A (IgA) response in germ-free mice was observed. Ongoing commensal exposure in colonized mice rapidly abrogated this response. Sequential doses lacked a classical prime-boost effect seen in systemic vaccination, but specific IgA induction occurred as a stepwise response to current bacterial exposure, such that the antibody repertoire matched the existing commensal content.
Resumo:
We have studied the structure and stability of (H3O+)(H2O)8 clusters using a combination of molecular dynamics sampling and high-level ab initio calculations. 20 distinct oxygen frameworks are found within 2 kcal/mol of the electronic or standard Gibbs free energy minimum. The impact of quantum zero-point vibrational corrections on the relative stability of these isomers is quite significant. The box-like isomers are favored in terms of electronic energy, but with the inclusion of zero-point vibrational corrections and entropic effects tree-like isomers are favored at higher temperatures. Under conditions from 0 to 298.15 K, the global minimum is predicted to be a tree-like structure with one dangling singly coordinated water molecule. Above 298.15 K, higher entropy tree-like isomers with two or more singly coordinated water molecules are favored. These assignments are generally consistent with experimental IR spectra of (H3O+)(H2O)8 obtained at 150 K.
Resumo:
The interaction between sensory rhodopsin II (SRII) and its transducer HtrII was studied by the time-resolved laser-induced transient grating method using the D75N mutant of SRII, which exhibits minimal visible light absorption changes during its photocycle, but mediates normal phototaxis responses. Flash-induced transient absorption spectra of transducer-free D75N and D75N joined to 120 amino-acid residues of the N-terminal part of the SRII transducer protein HtrII (DeltaHtrII) showed only one spectrally distinct K-like intermediate in their photocycles, but the transient grating method resolved four intermediates (K(1)-K(4)) distinct in their volumes. D75N bound to HtrII exhibited one additional slower kinetic species, which persists after complete recovery of the initial state as assessed by absorption changes in the UV-visible region. The kinetics indicate a conformationally changed form of the transducer portion (designated Tr*), which persists after the photoreceptor returns to the unphotolyzed state. The largest conformational change in the DeltaHtrII portion was found to cause a DeltaHtrII-dependent increase in volume rising in 8 micros in the K(4) state and a drastic decrease in the diffusion coefficient (D) of K(4) relatively to those of the unphotolyzed state and Tr*. The magnitude of the decrease in D indicates a large structural change, presumably in the solvent-exposed HAMP domain of DeltaHtrII, where rearrangement of interacting molecules in the solvent would substantially change friction between the protein and the solvent.