999 resultados para fractional tap-length
Resumo:
In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
A new steady state method for determination of the electron diffusion length in dye-sensitized solar cells (DSCs) is described and illustrated with data obtained using cells containing three different types of electrolyte. The method is based on using near-IR absorbance methods to establish pairs of illumination intensity for which the total number of trapped electrons is the same at open circuit (where all electrons are lost by interfacial electron transfer) as at short circuit (where the majority of electrons are collected at the contact). Electron diffusion length values obtained by this method are compared with values derived by intensity modulated methods and by impedance measurements under illumination. The results indicate that the values of electron diffusion length derived from the steady state measurements are consistently lower than the values obtained by the non steady-state methods. For all three electrolytes used in the study, the electron diffusion length was sufficiently high to guarantee electron collection efficiencies greater than 90%. Measurement of the trap distributions by near-IR absorption confirmed earlier observations of much higher electron trap densities for electrolytes containing Li+ ions. It is suggested that the electron trap distributions may not be intrinsic properties of the TiO2 nanoparticles, but may be associated with electron-ion interactions.
Resumo:
Clinical experience plays an important role in the development of expertise, particularly when coupled with reflection on practice. There is debate, however, regarding the amount of clinical experience that is required to become an expert. Various lengths of practice have been suggested as suitable for determining expertise, ranging from five years to 15 years. This study aimed to investigate the association between length of experience and therapists’ level of expertise in the field of cerebral palsy with upper limb hypertonicity using an empirical procedure named Cochrane–Weiss–Shanteau (CWS). The methodology involved re-analysis of quantitative data collected in two previous studies. In Study 1, 18 experienced occupational therapists made hypothetical clinical decisions related to 110 case vignettes, while in Study 2, 29 therapists considered 60 case vignettes drawn randomly from those used in Study 1. A CWS index was calculated for each participant's case decisions. Then, in each study, Spearman's rho was calculated to identify the correlations between the duration of experience and level of expertise. There was no significant association between these two variables in both studies. These analyses corroborated previous findings of no association between length of experience and judgemental performance. Therefore, length of experience may not be an appropriate criterion for determining level of expertise in relation to cerebral palsy practice.
Resumo:
During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and importance, mainly due to its demonstrated applications in numerous diverse and widespread fields in science and engineering. For example, fractional calculus has been successfully applied to problems in system biology, physics, chemistry and biochemistry, hydrology, medicine, and finance. In many cases these new fractional-order models are more adequate than the previously used integer-order models, because fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes that are governed by anomalous diffusion. Hence, there is a growing need to find the solution behaviour of these fractional differential equations. However, the analytic solutions of most fractional differential equations generally cannot be obtained. As a consequence, approximate and numerical techniques are playing an important role in identifying the solution behaviour of such fractional equations and exploring their applications. The main objective of this thesis is to develop new effective numerical methods and supporting analysis, based on the finite difference and finite element methods, for solving time, space and time-space fractional dynamical systems involving fractional derivatives in one and two spatial dimensions. A series of five published papers and one manuscript in preparation will be presented on the solution of the space fractional diffusion equation, space fractional advectiondispersion equation, time and space fractional diffusion equation, time and space fractional Fokker-Planck equation with a linear or non-linear source term, and fractional cable equation involving two time fractional derivatives, respectively. One important contribution of this thesis is the demonstration of how to choose different approximation techniques for different fractional derivatives. Special attention has been paid to the Riesz space fractional derivative, due to its important application in the field of groundwater flow, system biology and finance. We present three numerical methods to approximate the Riesz space fractional derivative, namely the L1/ L2-approximation method, the standard/shifted Gr¨unwald method, and the matrix transform method (MTM). The first two methods are based on the finite difference method, while the MTM allows discretisation in space using either the finite difference or finite element methods. Furthermore, we prove the equivalence of the Riesz fractional derivative and the fractional Laplacian operator under homogeneous Dirichlet boundary conditions – a result that had not previously been established. This result justifies the aforementioned use of the MTM to approximate the Riesz fractional derivative. After spatial discretisation, the time-space fractional partial differential equation is transformed into a system of fractional-in-time differential equations. We then investigate numerical methods to handle time fractional derivatives, be they Caputo type or Riemann-Liouville type. This leads to new methods utilising either finite difference strategies or the Laplace transform method for advancing the solution in time. The stability and convergence of our proposed numerical methods are also investigated. Numerical experiments are carried out in support of our theoretical analysis. We also emphasise that the numerical methods we develop are applicable for many other types of fractional partial differential equations.
Development of novel DNA-based methods for the measurement of length polymorphisms (microsatellites)
Resumo:
Background Length of hospital stay (LOS) is a surrogate marker for patients' well-being during hospital treatment and is associated with health care costs. Identifying pretreatment factors associated with LOS in surgical patients may enable early intervention in order to reduce postoperative LOS. Methods This cohort study enrolled 157 patients with suspected or proven gynecological cancer at a tertiary cancer centre (2004-2006). Before commencing treatment, the scored Patient Generated - Subjective Global Assessment (PG-SGA) measuring nutritional status and the Functional Assessment of Cancer Therapy-General (FACT-G) scale measuring quality of life (QOL) were completed. Clinical and demographic patient characteristics were prospectively obtained. Patients were grouped into those with prolonged LOS if their hospital stay was greater than the median LOS and those with average or below average LOS. Results Patients' mean age was 58 years (SD 14 years). Preoperatively, 81 (52%) patients presented with suspected benign disease/pelvic mass, 23 (15%) with suspected advanced ovarian cancer, 36 (23%) patients with suspected endometrial and 17 (11%) with cervical cancer, respectively. In univariate models prolonged LOS was associated with low serum albumin or hemoglobin, malnutrition (PG-SGA score and PG-SGA group B or C), low pretreatment FACT-G score, and suspected diagnosis of cancer. In multivariable models, PG-SGA group B or C, FACT-G score and suspected diagnosis of advanced ovarian cancer independently predicted LOS. Conclusions Malnutrition, low quality of life scores and being diagnosed with advanced ovarian cancer are the major determinants of prolonged LOS amongst gynecological cancer patients. Interventions addressing malnutrition and poor QOL may decrease LOS in gynecological cancer patients.
Resumo:
We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by a Caputo fractional derivative, and the second order space derivative by a symmetric fractional derivative. First, a method of separating variables expresses the analytical solution of the TSS-FDE in terms of the Mittag--Leffler function. Second, we propose two numerical methods to approximate the Caputo time fractional derivative: the finite difference method; and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.
Resumo:
Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.
Resumo:
Fractional Fokker–Planck equations have been used to model several physical situations that present anomalous diffusion. In this paper, a class of time- and space-fractional Fokker–Planck equations (TSFFPE), which involve the Riemann–Liouville time-fractional derivative of order 1-α (α(0, 1)) and the Riesz space-fractional derivative (RSFD) of order μ(1, 2), are considered. The solution of TSFFPE is important for describing the competition between subdiffusion and Lévy flights. However, effective numerical methods for solving TSFFPE are still in their infancy. We present three computationally efficient numerical methods to deal with the RSFD, and approximate the Riemann–Liouville time-fractional derivative using the Grünwald method. The TSFFPE is then transformed into a system of ordinary differential equations (ODE), which is solved by the fractional implicit trapezoidal method (FITM). Finally, numerical results are given to demonstrate the effectiveness of these methods. These techniques can also be applied to solve other types of fractional partial differential equations.
Resumo:
We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative and the second order space derivative by the symmetric fractional derivative. Firstly, a method of separating variables is used to express the analytical solution of the tss-fde in terms of the Mittag–Leffler function. Secondly, we propose two numerical methods to approximate the Caputo time fractional derivative, namely, the finite difference method and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results are presented to demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.