982 resultados para forest-steppe of north-western Black Sea Coast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is very challenging because of the general absence of calcareous (micro-) fossils and the recycling of fossil organic matter. As a consequence, radiocarbon (14C) ages of the acid-insoluble organic fraction (AIO) of the sediments bear uncertainties that are very difficult to quantify. In this paper we present the results of three different chronostratigraphic methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk sediment samples yielded age reversals down-core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom-rich unit yielded similar uncorrected 14C ages ranging from 13,517±56 to 11,543±47 years before present (yr BP). Correction of these ages by subtracting the core-top ages, which are assumed to reflect present-day deposition (as indicated by 21044 Pb dating of the sediment surface at one core site), yielded ages between ca. 10,500 and 8,400 calibrated years before present (cal yr BP). Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1,300 years indicated deposition of the diatom-rich sediments between 14,100 and 11,900 cal yr BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka BP for the diatom-rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves for palaeomagnetic intensity. As a third dating technique we applied conventional 53 radiocarbon dating of the AIO included in acid-cleaned diatom hard parts that were extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5,111±38 and 5,106±38 yr BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the extracted diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom-rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes on other parts of the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amundsen Sea Embayment (ASE) drains approximately 35% of the West Antarctic Ice Sheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future ice-sheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in their simulations. Here, we present detailed marine geological and radiocarbon data along three palaeo-ice stream tributary troughs in the western ASE to establish vital information on the timing of deglaciation of the WAIS since the Last Glacial Maximum (LGM). We have undertaken multi-proxy analyses of the cores (core description, shear strength, x-radiographs, magnetic susceptibility, wet bulk density, total organic carbon/nitrogen, carbonate content and clay mineral analyses) in order to: (1) characterise the sedimentological facies and depositional environments; and (2) identify the horizon(s) in each core that would yield the most reliable age for deglaciation. In accordance with previous studies we identify three key facies, which offer the most reliable stratigraphies for dating deglaciation by recording the transition from a grounded ice sheet to open marine environments. These facies are: i) subglacial, ii) proximal grounding-line, and iii) seasonal open-marine. In addition, we incorporate ages from other facies (e.g., glaciomarine diamictons deposited at some distance from the grounding line, such as glaciogenic debris flows and iceberg rafted diamictons and turbates) into our deglacial model. In total, we have dated 78 samples (mainly the acid insoluble organic (AIO) fraction, but also calcareous foraminifers), which include 63 downcore and 15 surface samples. Through careful sample selection prior to dating, we have established a robust deglacial chronology for this sector of the WAIS. Our data show that deglaciation of the western ASE was probably underway as early as 22,351 calibrated years before present (cal 44 yr BP), reaching the mid-shelf by 13,837 cal yr BP and the inner shelf to within c.10-12 km of the present ice shelf front between 12,618 and 10,072 cal yr BP. The deglacial steps in the western ASE broadly coincide with the rapid rises in sea-level associated with global meltwater pulses 1a and 1b, although given the potential dating uncertainty, additional, more precise ages are required before these findings can be fully substantiated. Finally, we show that the rate of ice-sheet retreat increased across the deep (up to1,600 m) basins of the inner shelf, highlighting the importance of reverse slope and pinning points in accelerated phases of deglaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the natural evolution of a river–delta–sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River–western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during orogenic evolution, as commonly observed in the Mediterranean area and discussed elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents the results of excavations and analytical studies regarding the taxonomic classification of a funeral site associated with the societies of ‘barrow cultures’ of the north-western Black Sea Coast in the first half of the 3rd and the middle of the 2nd millennium BC. The study discusses the ceremonial centres of the Eneolithic, Yamnaya and Noua cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses the taxonomy and autogenesis of the cycle of early ‘barrow cultures’ developed by the local communities of the middle Dniester Area or, in a broader comparative context, the north-western Black Sea Coast, in the 4th/3rd-2nd millennium BC . The purpose of the study is to conduct an analytical and conceptual entry point to the research questions of the dniester Contact area, specifically the contacts between autochthonous ‘late Eneolithic’ communities (Yamnaya, Catacomb and Babyno cultures) and incoming communities from the Baltic basin . The discussion of these cultures continues in other papers presented in this volume of Baltic-Pontic Studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal endophytes of tropical trees are expected to be exceptionally species rich as a consequence of high tree diversity in the tropics and the purported host restriction among the endophytes. Based on this premise, endophytes have been regarded as a focal group for estimating fungal numbers because their possible hyperdiverse nature would reflect significantly global fungal diversity. We present our consolidated ten-year work on 75 dicotyledonous tree hosts belonging to 33 families and growing in three different types of tropical forests of the NBR in the Western Ghats, southern India. We conclude that endophyte diversity in these forests is limited due to loose host affiliations among endophytes. Some endophytes have a wide host range and colonize taxonomically disparate hosts suggesting adaptations in them to counter a variety of defense chemicals in their hosts. Furthermore, such polyphagous endophytes dominate the endophyte assemblages of different tree hosts. Individual leaves may be densely colonized but only by a few endophyte species. It appears that the environment (the type of forest in this case) has a larger role in determining the endophyte assemblage of a plant host than the taxonomy of the host plant. Thus, different tropical plant communities have to be studied for their endophyte diversity to test the generalization that endophytes are hyperdiverse in the tropics, estimate their true species richness, and use them as a predictor group for more accurate assessment of global fungal diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent decades anthropogenic activities have dramatically impacted the Black Sea ecosystem. High levels of riverine nutrient input during the 1970s and 1980s caused eutrophic conditions including intense algal blooms resulting in hypoxia and the subsequent collapse of benthic habitats on the northwestern shelf. Intense fishing pressure also depleted stocks of many apex predators, contributing to an increase in planktivorous fish that are now the focus of fishing efforts. Additionally, the Black Sea's ecosystem changed even further with the introduction of exotic species. Economic collapse of the surrounding socialist republics in the early 1990s resulted in decreased nutrient loading which has allowed the Black Sea ecosystem to start to recover, but under rapidly changing economic and political conditions, future recovery is uncertain. In this study we use a multidisciplinary approach to integrate information from socio-economic and ecological systems to model the effects of future development scenarios on the marine environment of the northwestern Black Sea shelf. The Driver–Pressure–State-Impact-Response framework was used to construct conceptual models, explicitly mapping impacts of socio-economic Drivers on the marine ecosystem. Bayesian belief networks (BBNs), a stochastic modelling technique, were used to quantify these causal relationships, operationalise models and assess the effects of alternative development paths on the Black Sea ecosystem. BBNs use probabilistic dependencies as a common metric, allowing the integration of quantitative and qualitative information. Under the Baseline Scenario, recovery of the Black Sea appears tenuous as the exploitation of environmental resources (agriculture, fishing and shipping) increases with continued economic development of post-Soviet countries. This results in the loss of wetlands through drainage and reclamation. Water transparency decreases as phytoplankton bloom and this deterioration in water quality leads to the degradation of coastal plant communities (Cystoseira, seagrass) and also Phyllophora habitat on the shelf. Decomposition of benthic plants results in hypoxia killing flora and fauna associated with these habitats. Ecological pressure from these factors along with constant levels of fishing activity results in target stocks remaining depleted. Of the four Alternative Scenarios, two show improvements on the Baseline ecosystem condition, with improved waste water treatment and reduced fishing pressure, while the other two show a worsening, due to increased natural resource exploitation leading to rapid reversal of any recent ecosystem recovery. From this we conclude that variations in economic policy have significant consequences for the health of the Black Sea, and ecosystem recovery is directly linked to social–economic choices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Black Sea ecosystem experienced severe eutrophication-related degradation during the 1970s and 1980s. However, in recent years the Black Sea has shown some signs of recovery which are often attributed to a reduction in nutrient loading. Here, SeaWiFS chlorophyll a (chl a), a proxy for phytoplankton biomass, is used to investigate spatio-temporal patterns in Black Sea phytoplankton dynamics and to explore the potential role of climate in the Black Sea's recovery. Maps of chl a anomalies, calculated relative to the 8 year mean, emphasize spatial and temporal variability of phytoplankton biomass in the Black Sea, particularly between the riverine-influenced Northwest Shelf and the open Black Sea. Evolution of phytoplankton biomass has shown significant spatial variability of persistence of optimal bloom conditions between three major regions of the Black Sea. With the exception of 2001, chl a has generally decreased during our 8 year time-series. However, the winter of 2000–2001 was anomalously warm with low wind stress, resulting in reduced vertical mixing of the water column and retention of nutrients in the photic zone. These conditions were associated with anomalously high levels of chl a throughout much of the open Black Sea during the following spring and summer. The unusual climatic conditions occurring in 2001 may have triggered a shift in the Black Sea's chl a regime. The long-term significance of this recent shift is still uncertain but illustrates a non-linear response to climate forcing that makes future ecosystem changes in the pelagic Black Sea ecosystem difficult to predict.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study dynamics of infaunal benthic community of the continental shelf of north-eastern Arabian sea. The benthic (under water sea) organisms play an important role in the marine food chain. It can be concluded that seasonal differences in the benthic community was observed in lower depths and absent in deeper depths. Increased richness and diversity during pre-monsoon may be related to the increased primary production which inturn influenced by the increased nutrient input due to winter convection. No single ecological factor could be considered as a master factor. In general the area supports moderately high benthic production and diversified community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil organic matter (SOM) increases with time as landscape is restored. Studying SOM development along restored forest chronosequences would be useful in clarifying some of the uncertainties in quantifying C turnover rates with respect to forest clearance and ensuing restoration. The development of soil organic matter in the mineral soils was studied at four depths in a 16-year-old restored jarrah forest chronosequence. The size-separated SOM fractionation along with δ13C isotopic shift was utilised to resolve the soil C temporal and spatial changes with developing vegetation. The restored forest chronosequence revealed several important insights into how soil C is developing with age. Litter accumulation outpaced the native forest levels in 12 years after restoration. The surface soils, in general, showed increase in total C with age, but this trend was not clearly observed at lower depths. C accumulation was observed with increasing restoration age in all three SOM size-fractions in the surface 0–2 cm depth. These biodiverse forests show a trend towards accumulating C in recalcitrant stable forms, but only in the surface 0–2 cm mineral soil. A significant reverse trend was observed for the moderately labile SOM fraction for lower depths with increasing restoration age. Correlating the soil δ13C with total C concentration revealed the re-establishment of the isotopically depleted labile to enriched refractory C continuum with soil depth for the older restored sites. This implied that from a pedogenic perspective, the restored soils are developing towards the original native soil carbon profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study provides the first assessment of fish associations with oil and gas structures located in deep water (85-175 m) on Australia's north-west continental shelf, using rare oil industry video footage obtained from remotely operated vehicles. A diverse range of taxa were observed associating with the structures, including reef-dependent species and transient pelagic species. Ten commercially fished species were observed, the most abundant of which was Lutjanus argentimaculatus, with an estimated biomass for the two deepest structures (Goodwyn and Echo) of 109 kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Just as there are seashells on Mt. Everest, there is an exceptional wealth of fossil remains of marine organisms preserved in the chalk of western Kansas. This Cretaceous-aged rock, and the fossils therein, were deposited at a time when a great sea cut northward across the interior of the continent around 85 million years ago, inspiring the provocative title of Everhart's book. The title is true to its subject: documentation of the Cretaceous fossils of western Kansas, their geographic and stratigraphic occurrences, and the inferences that paleontologists can make about how the organisms represented by these fossils may have once lived and interacted with one another.