895 resultados para flowering features


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Cancer outlier profile analysis (COPA) has proven to be an effective approach to analyzing cancer expression data, leading to the discovery of the TMPRSS2 and ETS family gene fusion events in prostate cancer. However, the original COPA algorithm did not identify down-regulated outliers, and the currently available R package implementing the method is similarly restricted to the analysis of over-expressed outliers. Here we present a modified outlier detection method, mCOPA, which contains refinements to the outlier-detection algorithm, identifies both over- and under-expressed outliers, is freely available, and can be applied to any expression dataset. Results We compare our method to other feature-selection approaches, and demonstrate that mCOPA frequently selects more-informative features than do differential expression or variance-based feature selection approaches, and is able to recover observed clinical subtypes more consistently. We demonstrate the application of mCOPA to prostate cancer expression data, and explore the use of outliers in clustering, pathway analysis, and the identification of tumour suppressors. We analyse the under-expressed outliers to identify known and novel prostate cancer tumour suppressor genes, validating these against data in Oncomine and the Cancer Gene Index. We also demonstrate how a combination of outlier analysis and pathway analysis can identify molecular mechanisms disrupted in individual tumours. Conclusions We demonstrate that mCOPA offers advantages, compared to differential expression or variance, in selecting outlier features, and that the features so selected are better able to assign samples to clinically annotated subtypes. Further, we show that the biology explored by outlier analysis differs from that uncovered in differential expression or variance analysis. mCOPA is an important new tool for the exploration of cancer datasets and the discovery of new cancer subtypes, and can be combined with pathway and functional analysis approaches to discover mechanisms underpinning heterogeneity in cancers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image representations derived from simplified models of the primary visual cortex (V1), such as HOG and SIFT, elicit good performance in a myriad of visual classification tasks including object recognition/detection, pedestrian detection and facial expression classification. A central question in the vision, learning and neuroscience communities regards why these architectures perform so well. In this paper, we offer a unique perspective to this question by subsuming the role of V1-inspired features directly within a linear support vector machine (SVM). We demonstrate that a specific class of such features in conjunction with a linear SVM can be reinterpreted as inducing a weighted margin on the Kronecker basis expansion of an image. This new viewpoint on the role of V1-inspired features allows us to answer fundamental questions on the uniqueness and redundancies of these features, and offer substantial improvements in terms of computational and storage efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to examine the association between a range of objectively measured neighbourhood features and the likelihood of mid-aged adults walking for transport. Increased walking for transport would bring multiple benefits, including improved population and environmental health. As part of the baseline HABITAT study, 10,745 residents of Brisbane, Australia, aged 40–65 years, from 200 neighbourhoods were asked about the time they spent walking for transport. Walking data were collected by mail survey and the physical environmental features of neighbourhoods were compiled using a geographic information systems database. Walking for transport was categorised into four levels and the association between walking and each neighbourhood characteristic was examined using multilevel multinomial models. A number of threshold trends were evident; for example, off-road bikeways were consistently associated with walking between 60 and 150 min per week. Living within 500 m of public transit was also an important predictor but only for those who walked for less than 150 min per week. Interventions targeting these neighbourhood characteristics may lead to improved environmental quality, lower rates of overweight and obesity and associated chromic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to comprehend user information needs by concepts, this paper introduces a novel method to match relevance features with ontological concepts. The method first discovers relevance features from user local instances. Then, a concept matching approach is developed for matching these features to accurate concepts in a global knowledge base. This approach is significant for the transition of informative descriptor and conceptional descriptor. The proposed method is elaborately evaluated by comparing against three information gathering baseline models. The experimental results shows the matching approach is successful and achieves a series of remarkable improvements on search effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly of retroviruses is driven by oligomerization of the Gag polyprotein. We have used cryo-electron tomography together with subtomogram averaging to describe the three-dimensional structure of in vitro-assembled Gag particles from human immunodeficiency virus, Mason-Pfizer monkey virus, and Rous sarcoma virus. These represent three different retroviral genera: the lentiviruses, betaretroviruses and alpharetroviruses. Comparison of the three structures reveals the features of the supramolecular organization of Gag that are conserved between genera and therefore reflect general principles of Gag-Gag interactions and the features that are specific to certain genera. All three Gag proteins assemble to form approximately spherical hexameric lattices with irregular defects. In all three genera, the N-terminal domain of CA is arranged in hexameric rings around large holes. Where the rings meet, 2-fold densities, assigned to the C-terminal domain of CA, extend between adjacent rings, and link together at the 6-fold symmetry axis with a density, which extends toward the center of the particle into the nucleic acid layer. Although this general arrangement is conserved, differences can be seen throughout the CA and spacer peptide regions. These differences can be related to sequence differences among the genera. We conclude that the arrangement of the structural domains of CA is well conserved across genera, whereas the relationship between CA, the spacer peptide region, and the nucleic acid is more specific to each genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lockyer Valley is situated 80 km west of Brisbane and is bounded on the sou th and west by the Great Dividing Range. The valley is a major western sub - catchment of the larger Brisbane River drainage system and is drained by the Lockyer Creek. The Lockyer catchment forms approximately 20% of the total Brisbane River catchment and has an area of around 2900 km2. The Lockyer Creek is an ephemeral drainage system, and the stream and associated alluvium are the main source for irrigation water supply in the Lockyer Valley. The catchment is comprised of a number of well -defined, elongate tributaries in the south, and others in the north, which are more meandering in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents practical vision-based collision avoidance for objects approximating a single point feature. Using a spherical camera model, a visual predictive control scheme guides the aircraft around the object along a conical spiral trajectory. Visibility, state and control constraints are considered explicitly in the controller design by combining image and vehicle dynamics in the process model, and solving the nonlinear optimization problem over the resulting state space. Importantly, range is not required. Instead, the principles of conical spiral motion are used to design an objective function that simultaneously guides the aircraft along the avoidance trajectory, whilst providing an indication of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing a potential solution to the See and Avoid problem for unmanned aircraft and is demonstrated through a series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex. Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free 'biomantle' over a ferric 'stone line'. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the characteristics of ventures which have the potential to reach high growth and compares this with ‘everyday’ new ventures. Findings of interest in this paper include: • HP firms are characterised by higher human capital, are more likely to have a team of founders, are more likely to be product based. • HP firms are more likely to achieve more extreme levels of growth (both positive and negative). • HP ventures that make a loss are more likely to do so early in the venture process. Those that do hold on show that there can higher levels of loss made later on in firm development. HP firms have higher resource needs, in terms of seeking external finance, but are no more likely to receive external finance than regular firms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Few patients diagnosed with lung cancer are still alive 5 years after diagnosis. The aim of the current study was to conduct a 10-year review of a consecutive series of patients undergoing curative-intent surgical resection at the largest tertiary referral centre to identify prognostic factors. Methods: Case records of all patients operated on for lung cancer between 1998 and 2008 were reviewed. The clinical features and outcomes of all patients with non-small cell lung cancer (NSCLC) stage I-IV were recorded. Results: A total of 654 patients underwent surgical resection with curative intent during the study period. Median overall survival for the entire cohort was 37 months. The median age at operation was 66 years, with males accounting for 62.7 %. Squamous cell type was the most common histological subtype, and lobectomies were performed in 76.5 % of surgical resections. Pneumonectomy rates decreased significantly in the latter half of the study (25 vs. 16.3 %), while sub-anatomical resection more than doubled (2 vs. 5 %) (p < 0.005). Clinico-pathological characteristics associated with improved survival by univariate analysis include younger age, female sex, smaller tumour size, smoking status, lobectomy, lower T and N status and less advanced pathological stage. Age, gender, smoking status and tumour size, as well as T and N descriptors have emerged as independent prognostic factors by multivariate analysis. Conclusion: We identified several factors that predicted outcome for NSCLC patients undergoing curative-intent surgical resection. Survival rates in our series are comparable to those reported from other thoracic surgery centres. © 2012 Royal Academy of Medicine in Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The huge amount of CCTV footage available makes it very burdensome to process these videos manually through human operators. This has made automated processing of video footage through computer vision technologies necessary. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned ‘normal’ model. There is no precise and exact definition for an abnormal activity; it is dependent on the context of the scene. Hence there is a requirement for different feature sets to detect different kinds of abnormal activities. In this work we evaluate the performance of different state of the art features to detect the presence of the abnormal objects in the scene. These include optical flow vectors to detect motion related anomalies, textures of optical flow and image textures to detect the presence of abnormal objects. These extracted features in different combinations are modeled using different state of the art models such as Gaussian mixture model(GMM) and Semi- 2D Hidden Markov model(HMM) to analyse the performances. Further we apply perspective normalization to the extracted features to compensate for perspective distortion due to the distance between the camera and objects of consideration. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.