930 resultados para flow injection system
Resumo:
The design and performance of a miniaturized chip-type tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] electrochemiluminescence (ECL) detection cell suitable for both capillary electrophoresis (CE) and flow injection (FI) analysis are described. The cell was fabricated from two pieces of glass (20 x 15 x 1.7 mm), and the 0.5-mm-diameter platinum disk was used as working electrode held at +1.15 V (vs silver wire quasi-reference), the stainless steel guide tubing as counter electrode, and the silver wire as quasi-reference electrode. The performance traits of the cell in both CE and FI modes were evaluated using tripropylamine, proline, and oxalate and compared favorably to those reported for CE and FI detection cells. The advantages of versatility, sensitivity, and accuracy make the device attractive for the routine analysis of amine-containing species or oxalate by CE and FI with Ru(bPY)(3)(2divided by) ECL detection.
Resumo:
A method was developed for the determination of micro mercury in the soil, plants and the traditional Chinese medicine using flow injection quartz tube-atomic absorption spectrometry. The effect of the factors such as acidity,. the carrier solution, the flow rate of reductive solution and argon gas, etc. on the determination was studied. When vanadic oxide, nitric acid and sulfuric acid were used to decompose the sample reliable result could be obtained. The characteristic mass of the method is 59 pg, the detection limit is 0.028 mug/L, RSD is < 3.9% and the recovery is in the range of 94% &SIM; 102%.
Resumo:
A flow injection method has been developed for the determination of dopamine based on its inhibition of the electrochemiluminescence of luminol. This method is simple and sensitive for dopamine detection. Under the selected experimental conditions, the decreased electrochemiluminescent intensity is linear with dopamine concentration in the range of 5.0 x 10(-8)-1.0 x 10(-5) mol/L with a detection limit of 30 nmol/L. The relative standard deviation of eleven determinations is 1.9% for 1.0 x 10(-6) mol/L dopamine. The proposed method has been applied to the detection of dopamine in pharmaceutical injections with satisfactory results.
Resumo:
A simple and sensitive flow injection method is presented for the determination of histidine based on its enhancement of electrogenerated chemiluminescence (ECL) of luminol. After optimization of the experimental parameters, the working range for histidine was in 1.0 x 10(-6) to 1.0 x 10(-3) mol/L with a detection limit (S/N = 3) of 0.56 mumol/L. The relative standard deviation was 1.6% for 11 measurements of 5 x 10(-5) mol/L histidine solution. The proposed method has been successfully applied to the determination of histidine in real pharmaceutical preparation.
Resumo:
Matrix effects in now injection (FI) inductively coupled plasma mass spectrometry has been studied,and the results have been compared with those of continuous nebulization. The matrix element As and nu with higher ionization potential ( > 9eV) have enhancement effect on the analyte signal,and the heavier the analyte mass, the smaller the enhancement effects by Fl. The matrix elements Cu, In, Li, Na and Pb with lower ionization potential have suppression effect on the analyte signal. The heavier the matrix element mass, the more severe the suppression effects. The heavier the analyte mass, the smaller the suppression effects. The higher ionization potential of analyte, the more severe the suppression effects. Compared with continuous nebulization, the degree of suppression effect is smaller and the degree of the enhancement effect is larger by Fl.
Resumo:
4-Aminophenol (4-AP), paracetamol (PRCT), norepinephrine (NE), and dopamine (DA) (all somewhat hydrophobic compounds) were HPLC electrochemically detected while the signals from uric acid (UA) and ascorbic acid (AA) (both hydrophilic compounds at the pH studied) were minimized, taking advantage of the permselectivity of the self-assembled n-alkanethiol monolayer (C-10-SAM)-modified Au electrodes based on solute polarity, The effects of various factors, such as the chain length of the n-alkanethiol modifier, modifying time, and pH value, on the permeability of C-10-SAM coatings were examined, The calibration curves, linear response ranges, detection limits, and reproducibilities of the EC detector for 4-AP, PRCT, NE, and DA were obtained, The result shows that the EC detector can be applied in the chromatographic detection of 4-AP, PRCT, NE, and DA in urine, effectively removing the influence of UA and AA in high concentrations existing in biological samples. As a result, a great improvement in the selectivity of EC detectors has been achieved by using Au electrodes coated with neutral n-alkanethiol monolayer.
Resumo:
A novel wall-jet cell with parallel dual cylinder (PDC) microelectrodes was constructed and used for flow injection analysis (FLA). The detector takes the advantages of ''redox recycling'' between bipotentiostated microcylinder electrodes (- 0.4 V/SCE an
Resumo:
G chemically modified electrode (CME) was prepared by electrochemical copolymerization of pyrrole and Methylene Blue. The resulting CME exhibits effective electrocatalytic activity towards the oxidation of reduced nicotinamide coenzymes (NADH and NADPH),
Resumo:
A Prussian Blue-modified glassy carbon electrode prepared by simple adsorption exhibited excellent electrocatalytic activity in the oxidation of hydrazine in acidic media. A film of the perfluorosulphonic acid polymer Nafion coated on top of the Prussian Blue-modified glassy carbon electrode can improve the mechanical stability of the Prussian Blue layer in the flow stream. Hydrazine was detected by flow-injection analysis at the modified electrode with high sensitivity. The limit of detection was 0.6 ng.
Resumo:
Chemically modified electrodes prepared by treating the cobalt tetraphenylporphyrin modified glassy-carbon electrode at 750-degrees (HCME) are shown to catalyze the electrooxidation of hydrazine. The oxidation occurred at +0.63 V vs. Ag/AgCl (saturated potassium chloride) in pH 2.5 media. The catalytic response is evaluated with respect to solution pH, potential scan-rate, concentration dependence and flow-rate. The catalytic stability of the HCME is compared with that of the cobalt tetraphenylporphyrin adsorbed glassy-carbon electrode. The stability of the HCME was excellent in acidic solution and even in solutions containing organic solvent (50% CH3OH). When used as the sensing electrode in amperometric detection in flow-injection analysis, the HCME permitted sensitive detection of hydrazine at 0.5 V. The limit of detection was 0.1 ng. The linear range was from 50 ng to 2.4-mu-g. The method is very sensitive and selective.
Resumo:
A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.
Resumo:
An electrochemical detector based on a polyaniline conducting polymer chemically modified electrode (PAn CME) was developed for use in flow-injection analysis and ion chromatography. Iodide, bromide, thiocyanate and thiosulphate are detected by using ion chromatography with a PAn CME electrochemical detector. The detection limits are 1, 5, 10 and 10 mgl-1, respectively. The CME response for electroinactive anions varies selectively with the mobile phase composition in flow-injection analysis. By this approach, perchlorate, sulphate, nitrate, iodide, acetate and oxalate can be detected conveniently and reproducibly over a linear concentration range of at least 3 orders of magnitude. The electrode is stable for over 2 weeks with no evidence of chemical or mechanical deterioration.