393 resultados para flavonoid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transthyretin (TTR) is a carrier protein involved in human amyloidosis. The development of small molecules that may act as TTR amyloid inhibitors is a promising strategy to treat these pathologies. Here we selected and characterized the interaction of flavonoids with the wild type and the V30M amyloidogenic mutant TTR. TTR acid aggregation was evaluated in vitro in the presence of the different flavonoids. The best TTR aggregation inhibitors were studied by Isothermal Titration Calorimetry (ITC) in order to reveal their thermodynamic signature of binding to TTRwt. Crystal structures of TTRwt in complex with the top binders were also obtained, enabling us to in depth inspect TTR interactions with these flavonoids. The results indicate that changing the number and position of hydroxyl groups attached to the flavonoid core strongly influence flavonoid recognition by TTR, either by changing ligand affinity or its mechanism of interaction with the two sites of TTR. We also compared the results obtained for ITRwt with the V30M mutant structure in the apo form, allowing us to pinpoint structural features that may facilitate or hamper ligand binding to the V30M mutant. Our data show that the TTRwt binding site is labile and, in particular, the central region of the cavity is sensible for the small differences in the ligands tested and can be influenced by the Met30 amyloidogenic mutation, therefore playing important roles in flavonoid binding affinity, mechanism and mutant protein ligand binding specificities. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An antioxidant structure-activity study is carried out in this work with ten flavonoid compounds using quantum chemistry calculations with the functional of density theory method. According to the geometry obtained by using the B3LYP/6-31G(d) method, the HOMO, ionization potential, stabilization energies, and spin density distribution showed that the flavonol is the more antioxidant nucleus. The spin density contribution is determinant for the stability of the free radical. The number of resonance structures is related to the pi-type electron system. 3-hydroxyflavone is the basic antioxidant structure for the simplified flavonoids studied here. The electron abstraction is more favored in the molecules where ether group and 3-hydroxyl are present, nonetheless 2,3-double bond and carbonyl moiety are facultative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chrysin is one of the natural flavonoids present in plants, and large amounts are present in honey and propolis. In addition to anticancer, antioxidation, and anti-inflammatory activities, chrysin has also been reported to be an inhibitor of aromatase, an enzyme converting testosterone into estrogen. The present study evaluated the mutagenicity of this flavonoid using micronucleus (MN) with HepG2 cells and Salmonella. Cell survival after exposure to different concentrations of chrysin was also determined using sulforhodamine B (SRB) colorimetric assay in HepG2 cells and the influence of this flavonoid on growth of cells in relation to the cell cycle and apoptosis. TheMN test showed that from 1 to 15 mu M of this flavonoid mutagenic activity was noted in HepG2 cells. The Salmonella assay demonstrated a positive response to the TA100 Salmonella strain in the presence or absence of S9, suggesting that this compound acted on DNA, inducing base pair substitution before or after metabolism via cytochrome P-450. The SRB assay illustrated that chrysin promoted growth inhibition of HepG2 cells in both periods studied (24 and 48 h). After 24 h of exposure it was noted that the most significant results were obtained with a concentration of 50 mu M, resulting in 83% inhibition and SubG0 percentage of 12%. After 48 h of incubation cell proliferation inhibition rates (97% at 50 mu M) were significantly higher. Our results showed that chrysin is a mutagenic and cytotoxic compound in cultured human HepG2 cells and Salmonella typhimurium. Although it is widely accepted that flavonoids are substances beneficial to health, one must evaluate the risk versus benefit relationship and concentrations of these substances to which an individual may be exposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Passifloraceae family is extensively used in native Brazilian folk medicine to treat a wide variety of diseases. The problem of flavonoid extraction from Passiflora was treated by application of design of experiments (DOE), as an experiment with mixture including one categorical process variable. The components of the binary mixture were: ethanol (component A) and water (component B); the categorical process variable: extraction method (factor C) was varied at two levels: (+1) maceration and (-1) percolation. ANOVA suggested a cubic model for P. edulis extraction and a quadratic model for P. alata.These results indicate that the proportion of components A and B in the mixture is the main factor involved in significantly increasing flavonoid extraction. In regard to the extraction methods, no important differences were observed, which indicates that these two traditional extraction methods could be effectively used to extract flavonoids from both medicinal plants. The evaluation of antioxidant activity of the extract by ORAC method showed that P. edulis displays twice as much antioxidant activity as P. alata. Considering that maceration is a simple, rapid and environmentally friendly extraction method, in this study, the optimized conditions for flavonoid extraction from these Passiflora species is maceration with 75% ethanol for P. edulis and 50% ethanol for P. alata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism that perform a variety of essential functions in higher plants. Studies over the past 30 years have supported a model in which flavonoid metabolism is catalyzed by an enzyme complex localized to the endoplasmic reticulum [Hrazdina, G. & Wagner, G. J. (1985) Arch. Biochem. Biophys. 237, 88–100]. To test this model further we assayed for direct interactions between several key flavonoid biosynthetic enzymes in developing Arabidopsis seedlings. Two-hybrid assays indicated that chalcone synthase, chalcone isomerase (CHI), and dihydroflavonol 4-reductase interact in an orientation-dependent manner. Affinity chromatography and immunoprecipitation assays further demonstrated interactions between chalcone synthase, CHI, and flavonol 3-hydroxylase in lysates from Arabidopsis seedlings. These results support the hypothesis that the flavonoid enzymes assemble as a macromolecular complex with contacts between multiple proteins. Evidence was also found for posttranslational modification of CHI. The importance of understanding the subcellular organization of elaborate enzyme systems is discussed in the context of metabolic engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central role of cyclin-dependent kinases (CDKs) in cell cycle regulation makes them a promising target for studying inhibitory molecules that can modify the degree of cell proliferation. The discovery of specific inhibitors of CDKs such as polyhydroxylated flavones has opened the way to investigation and design of antimitotic compounds. A novel flavone, (-)-cis-5,7-dihydroxyphenyl-8-[4-(3-hydroxy-1-methyl)piperidinyl] -4H-1-benzopyran-4-one hydrochloride hemihydrate (L868276), is a potent inhibitor of CDKs. A chlorinated form, flavopiridol, is currently in phase I clinical trials as a drug against breast tumors. We determined the crystal structure of a complex between CDK2 and L868276 at 2.33 angstroms resolution and refined to an Rfactor 20.3%. The aromatic portion of the inhibitor binds to the adenine-binding pocket of CDK2, and the position of the phenyl group of the inhibitor enables the inhibitor to make contacts with the enzyme not observed in the ATP complex structure. The analysis of the position of this phenyl ring not only explains the great differences of kinase inhibition among the flavonoid inhibitors but also explains the specificity of L868276 to inhibit CDK2 and CDC2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strawberry fruits are highly appreciated worldwide due to their pleasant flavor and aroma and to the health benefits associated to their consumption. An important part of these properties is due to their content in secondary metabolites, especially phenolic compounds, of which flavonoids are the most abundant in the strawberry fruit. Although the flavonoid biosynthesis pathway is uncovered, little is known about its regulation. The strawberry Fra a (Fra) genes constitute a large family of homologs of the major birch pollen allergen Bet v 1 and for which no equivalents exist in Arabidopsis. Our group has shown that Fra proteins are involved in the formation of colored compounds in strawberries (Muñoz et al., 2010), which mainly depends on the production of certain flavonoids; that they are structurally homologs to the PYR/PYL/RCAR Arabidopsis ABA receptor, and that they are able to bind flavonoids (Casañal et al., 2013). With these previous results, our working hypothesis is that the Fra proteins are involved in the regulation of the flavonoids pathway. They would mechanistically act as the ABA receptor, binding a protein interactor and a ligand to regulate a signaling cascade and/or act as molecular carriers. The main objective of this research is to characterize the Fra family in strawberry and gain insight into their role in the flavonoid metabolism. By RNAseq expression analysis in ripening fruits we have identified transcripts for 10 members of the Fra family. Although expressed in all tissues analyzed, each family member presents a unique pattern of expression, which suggests functional specialization for each Fra protein. Then, our next approach was to identify the proteins that interact with Fras and their ligands to gain knowledge on the role that these proteins play in the flavonoids pathway. To identify the interacting partners of Fras we have performed a yeast two hybrid (Y2H) screening against cDNA libraries of strawberry fruits at the green and red stages. A protein that shares a 95% homology to the Heat stress transcription factor A-4-C like of Fragaria vesca (HSA4C) interacts specifically with Fra1 and not with other family members, which suggests functional diversification of Fra proteins in specific signaling pathways. The Y2H screening is not yet saturated, so characterization of other interacting proteins with other members of the Fra family will shed light on the functional diversity within this gene family. This research will contribute to gain knowledge on how the flavonoid pathway, and hence, the fruit ripening, is regulated in strawberry; an economically important crop but for which basic research is still very limited. References: Muñoz, C, et al. (2010). The Strawberry Fruit Fra a Allergen Functions in Flavonoid Biosynthesis. Molecular Plant, 3(1): 113–124. Casañal, A, et al (2013). The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding Metabolic Intermediates. Journal of Biological Chemistry, 288(49): 35322–35332.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the hypothesis that the plant stress related elicitor cis-jasmone (cJ) provides protection in soybean pods against the seed-sucking stink bug pest, Euschistus heros, the growth of E. heros on cJ-treated pods was investigated using three soybean cultivars differing in insect susceptibility, i.e. BRS 134 (susceptible), IAC 100 (resistant) and Dowling (resistant). E. heros showed reduced weight gain when fed cJ-treated Dowling, whereas no effect on weight gain was observed when fed other treated cultivars. Using analysis of variance, a three factor (cultivar x treatment x time) interaction was observed with concentrations of the flavonoid glycosides daidzin and genistin, and their corresponding aglycones, daidzein and genistein. There were increases in genistein and genistin concentrations in cJ-treated Dowling at 144 and 120 h post treatment, respectively. Higher concentrations of malonyldaidzin and malonylgenistin in Dowling, compared to BRS 134 and IAC 100, were observed independently of time, the highest concentrations being observed in cJ-treated seeds. Levels of glycitin and malonylglycitin were higher in BRS 134 and IAC 100 compared to Dowling. Canonical variate analysis indicated daidzein (in the first two canonical variates) and genistein (in the first only) as important discriminatory variables. These results suggest that cJ treatment leads to an increase in the levels of potentially defensive isoflavonoids in immature soybean seeds, but the negative effect upon E. heros performance is cultivar-dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apples are rich in polyphenols, which provide antioxidant properties, mediation of cellular processes such as inflammation, and modulation of gut microbiota. In this study we compared genetically engineered apples with increased flavonoids [myeloblastis transcription factor 10 (MYB10)] with nontransformed apples from the same genotype, "Royal Gala" (RG), and a control diet with no apple. Compared with the RG diet, the MYB10 diet contained elevated concentrations of the flavonoid subclasses anthocyanins, flavanol monomers (epicatechin) and oligomers (procyanidin B2), and flavonols (quercetin glycosides), but other plant secondary metabolites were largely unaltered. We used these apples to investigate the effects of dietary flavonoids on inflammation and gut microbiota in 2 mouse feeding trials. In trial 1, male mice were fed a control diet or diets supplemented with 20% MYB10 apple flesh and peel (MYB-FP) or RG apple flesh and peel (RG-FP) for 7 d. In trial 2, male mice were fed MYB-FP or RG-FP diets or diets supplemented with 20% MYB10 apple flesh or RG apple flesh for 7 or 21 d. In trial 1, the transcription levels of inflammation-linked genes in mice showed decreases of >2-fold for interleukin-2 receptor (Il2rb), chemokine receptor 2 (Ccr2), chemokine ligand 10 (Cxcl10), and chemokine receptor 10 (Ccr10) at 7 d for the MYB-FP diet compared with the RG-FP diet (P <0.05). In trial 2, the inflammation marker prostaglandin E2 (PGE2) in the plasma of mice fed the MYB-FP diet at 21 d was reduced by 10-fold (P < 0.01) compared with the RG-FP diet. In colonic microbiota, the number of total bacteria for mice fed the MYB-FP diet was 6% higher than for mice fed the control diet at 21 d (P = 0.01). In summary, high-flavonoid apple was associated with decreases in some inflammation markers and changes in gut microbiota when fed to healthy mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much of the diversity of anthocyanins is due to the action of glycosyltransferases, which add sugar moieties to anthocyanidins. We identified two glycosyltransferases, F3GT1 and F3GGT1, from red-fleshed kiwifruit (Actinidia chinensis) that perform sequential glycosylation steps. Red-fleshed genotypes of kiwifruit accumulate anthocyanins mainly in the form of cyanidin 3-O-xylo-galactoside. Genes in the anthocyanin and flavonoid biosynthetic pathway were identified and shown to be expressed in fruit tissue. However, only the expression of the glycosyltransferase F3GT1 was correlated with anthocyanin accumulation in red tissues. Recombinant enzyme assays in vitro and in vivo RNA interference (RNAi) demonstrated the role of F3GT1 in the production of cyanidin 3-O-galactoside. F3GGT1 was shown to further glycosylate the sugar moiety of the anthocyanins. This second glycosylation can affect the solubility and stability of the pigments and modify their colour. We show that recombinant F3GGT1 can catalyse the addition of UDP-xylose to cyanidin 3-galactoside. While F3GGT1 is responsible for the end-product of the pathway, F3GT1 is likely to be the key enzyme regulating the accumulation of anthocyanin in red-fleshed kiwifruit varieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proanthocyanidins (PAs) are products of the flavonoid pathway, which also leads to the production of anthocyanins and flavonols. Many flavonoids have antioxidant properties and may have beneficial effects for human health. PAs are found in the seeds and fruits of many plants. In apple fruit (Malus × domestica Borkh.), the flavonoid biosynthetic pathway is most active in the skin, with the flavan-3-ols, catechin, and epicatechin acting as the initiating units for the synthesis of PA polymers. This study examined the genes involved in the production of PAs in three apple cultivars: two heritage apple cultivars, Hetlina and Devonshire Quarrenden, and a commercial cultivar, Royal Gala. HPLC analysis shows that tree-ripe fruit from Hetlina and Devonshire Quarrenden had a higher phenolic content than Royal Gala. Epicatechin and catechin biosynthesis is under the control of the biosynthetic enzymes anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR1), respectively. Counter-intuitively, real-time quantitative PCR analysis showed that the expression levels of Royal Gala LAR1 and ANR were significantly higher than those of both Devonshire Quarrenden and Hetlina. This suggests that a compensatory feedback mechanism may be active, whereby low concentrations of PAs may induce higher expression of gene transcripts. Further investigation is required into the regulation of these key enzymes in apple.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-3,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10R6, are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10R6 transgene (MYB10–R6pro:MYB10:MYB10term) activated anthocyanin synthesis when transiently expressed in Antirrhinumroseadorsea petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of ‘Mitchell’ petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propolis of Australian stingless bees (Tetragonula carbonaria, Meliponini) originating from Corymbia torelliana (Myrtaceae) fruit resins was tested for its antimicrobial activities as well as its flavonoid contents. This study aimed at the isolation, structural elucidation and antibacterial testing of flavanones of C. torelliana fruit resins that are incorporated into stingless bee propolis. Flavanones of this study were elucidated by spectroscopic and spectrometric methods including UV, 1D and 2D NMR, EI-MS, ESI-MS and HR-MS. The results indicated known C-methylated flavanones namely, 1 (2S)-cryptostrobin, its regioisomer 2 (2S)- stroboponin, 3 (2S)- cryptostrobin 7-methyl ether, and 6 (2S)- desmethoxymatteucinol, and known flavanones 4 (2S)- pinostrobin and 5 (2S)- pinocembrin as markers for C. torelliana fruit resins and one propolis type. Ethanolic preparations of propolis were shown to be active against Staphylococcus aureus (ATCC 25923) and to a lesser extent against Pseudomonas aeruginosa (ATCC 27853). C. torelliana flavanones inhibited the growth of S. aureus therefore contributing to the antibacterial effects observed for Australian stingless bee propolis extracts.