987 resultados para fish scale
Resumo:
Mesopelagic fish were collected using a 1 m**2 Double-MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System) and 4.5 m**2 IKMT (Isaacs-Kidd midwater trawl). The main portion of the IKMT was 20 mm knotted nylon, and the tail bag was 3 mm knotless nylon. Oblique IKMT tows were made to a maximum depth of 500 m at a tow speed of 3.5 knots. The original cruise plan intended for nighttime IKMT tows, but tow times varied due to operational constraints. The MOCNESS was equipped with 20 nets of 333 µm mesh size; 10 nets per side. The towing speed was 2 knots. Samples were collected to a maximum depth of 1250 m. The first oblique nets sampled from the surface to the max depth, and the other nets sampled depth stratified bins of the water column. MOCNESS hauls were performed during day and night to investigate diel vertical migrations. Mesoplelagic fish were processed on board. All fish were picked from all IKMT nets, most oblique MOCNESS nets, and the left side nets of the depth stratified MOCNESS samples. The Depth stratified nets from the right side of the MOCNESS frame were preserved in 5 % formalin for future quantitative analyses of the nekton. Fish were identified to the lowest possible taxa using Whitehead et al. (1984) and Fahay (2007). Standard length of each fish was measured to the nearest 0.1 mm using a digital caliper. Measured and identified fish were frozen in an -80 °C freezer, and shipped to the University of Hamburg at the end of the cruise.
Resumo:
Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3 – , Cl – , NH4 + , NO2 – , NO3 – , H2PO4 – , SO4 2– , Na + , K+ , Ca 2+ and Mg 2+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO3 - , followed, in decreasing order, by Ca 2+ , H2PO4 – , K+ , Mg 2+ and SO4 2– . The total amount of feed required per mEq ranged from 1.61- 13.1 kg for the four most abundant ions (NO3 – , Ca 2+ , H2PO4 – and K+ ) at a density of 2 kg fish m–3 , suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries.
Resumo:
The paradigm that mangroves are critical for sustaining production in coastal fisheries is widely accepted, but empirical evidence has been tenuous. This study showed that links between mangrove extent and coastal fisheries production could be detected for some species at a broad regional scale (1000s of kilometres) on the east coast of Queensland, Australia. The relationships between catch-per-unit-effort for different commercially caught species in four fisheries (trawl, line, net and pot fisheries) and mangrove characteristics, estimated from Landsat images were examined using multiple regression analyses. The species were categorised into three groups based on information on their life history characteristics, namely mangrove-related species (banana prawns Penaeus merguiensis, mud crabs Scylla serrata and barramundi Lates calcarifer), estuarine species (tiger prawns Penaeus esculentus and Penaeus semisulcatus, blue swimmer crabs Portunus pelagicus and blue threadfin Eleutheronema tetradactylum) and offshore species (coral trout Plectropomus spp.). For the mangrove-related species, mangrove characteristics such as area and perimeter accounted for most of the variation in the model; for the non-mangrove estuarine species, latitude was the dominant parameter but some mangrove characteristics (e.g. mangrove perimeter) also made significant contributions to the models. In contrast, for the offshore species, latitude was the dominant variable, with no contribution from mangrove characteristics. This study also identified that finer scale spatial data for the fisheries, to enable catch information to be attributed to a particular catchment, would help to improve our understanding of relationships between mangroves and fisheries production. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of 31 plant extracts, which most are traditionally used to treat ciguatera fish poisoning in the Pacific area, were Studied on the cytotoxicity of mouse neuroblastoma cells produced by ouabain, veratridine and/or brevetoxin-3 or Pacific ciguatoxin-1. The cell viability was determined using a quantitative colorimetric method. A marked cytotoxicity of seven of the 31 plant extracts studied, was observed. Despite this, these plant extracts were suspected to contain active compound(s) against the cytotoxicity produced by brevetoxin (2 extracts), brevetoxin, ouabain and/or veratridine (3 extracts), or only against that of ouabain and/or veratridine (2 extracts). Among the 24 plant extracts that exhibited by themselves no cytotoxicity, 22 were active against the effect of brevetoxin or against that of both veratridine and brevetoxin. similar results were obtained when the seven most active plant extracts were reassayed using ciguatoxin instead of brevetoxin. In conclusion, the present work reports the first activity assessment of some plant extracts, achieved in vitro on a quite large scale. The fact that 27 plant extracts were found to exert, in vitro, a protective effect against the action of ciguatoxin and/or brevetoxin, paves the way for finding new active compounds to treat ciguatera fish poisoning, provided these compounds also reverse the effects of sodium channel activators. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Enhanced biological phosphorus removal (EBPR) has been used at many wastewater treatment plants all over the world for many years. In this study a full-scale sludge with good EBPR was tested with P-release batch tests and combined FISH/MAR (fluorescence in situ hybridisation and microautoradiography). Proposed models of PAOs and GAOs (polyphosphate- and glycogen-accumulating organisms) and microbial methods suggested from studies of laboratory reactors were found to be applicable also on sludge from full-scale plants. Dependency of pH and the uptake of both acetate and propionate were studied and used for calculations for verifying the models and results from microbial methods. All rates found from the batch tests with acetate were higher than in the batch tests with propionate, which was explained by the finding that only those parts of the bacterial community that were able to take up acetate anaerobically were able to take up propionate anaerobically.
Resumo:
The speculation that climate change may impact on sustainable fish production suggests a need to understand how these effects influence fish catch on a broad scale. With a gross annual value of A$ 2.2 billion, the fishing industry is a significant primary industry in Australia. Many commercially important fish species use estuarine habitats such as mangroves, tidal flats and seagrass beds as nurseries or breeding grounds and have lifecycles correlated to rainfall and temperature patterns. Correlation of catches of mullet (e.g. Mugil cephalus) and barramundi (Lates calcarifer) with rainfall suggests that fisheries may be sensitive to effects of climate change. This work reviews key commercial fish and crustacean species and their link to estuaries and climate parameters. A conceptual model demonstrates ecological and biophysical links of estuarine habitats that influences capture fisheries production. The difficulty involved in explaining the effect of climate change on fisheries arising from the lack of ecological knowledge may be overcome by relating climate parameters with long-term fish catch data. Catch per unit effort (CPUE), rainfall, the Southern Oscillation Index (SOI) and catch time series for specific combinations of climate seasons and regions have been explored and surplus production models applied to Queensland's commercial fish catch data with the program CLIMPROD. Results indicate that up to 30% of Queensland's total fish catch and up to 80% of the barramundi catch variation for specific regions can be explained by rainfall often with a lagged response to rainfall events. Our approach allows an evaluation of the economic consequences of climate parameters on estuarine fisheries. thus highlighting the need to develop forecast models and manage estuaries for future climate chan e impact by adjusting the quota for climate change sensitive species. Different modelling approaches are discussed with respect to their forecast ability. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This thesis provides a detailed study of methods for dissolving oxygen in water to reduce water requirements for fish farming. The principal sources of oxygen are air or pure oxygen gas. Aeration methods have the distinct advantage of the universal availability of air. However, the effectiveness of such methods is diminished by the presence of nitrogen in the air and, in general, the maintenance of dissolved oxygen levels above 70% saturation is likely to result in excessive power requirements. Pure oxygen has five times the solubility of oxygen in air and it is possible, therefore to achieve much higher transfer rates. However, oxygen is expensive and its economic use is essential: it is important, therefore, to dissolve a high proportion of the oxygen. Four distinct oxygenation systems were evaluated by the author. A detailed analysis of a column oxygenator is given first. The column was designed so that the oxygen bubbles generated are trapped within the column until dissolved. In seawater, much smaller bubbles are formed and this led to the development of a jet oxygenator which disperses gas rubbles within the rearing tank. Both the above systems were designed primarily for oxygenating recycled tank water. For oxygenating a primary water source, a U -tube device was evaluated. Lastly, the possibility of supporting fish stocks without any external power source, other than a pressured supply of oxygen from a liquid oxygen store, was considered. Experience of running commercial-scale oxygenation systems in high-intensity fish farms has made it possible to estimate operating costs of both aeration and oxygenation systems. The significance of these costs is discussed.
Resumo:
Our main goal was to determine if fish distribution and adundance in temporary wetlands were shaped primarily by large-scale (landscape) or small-scale (local) characteristics and to investigate the influence of cattle ranching on fish assemblages. A total of 24 temporary ponds were selected at the Kissimmee Prairie Sanctuary and the Mac- Arthur Agro-Ecology Research Center. Each wetland was sampled for fish using throw traps and dip nets during 1999. Landscape processes (connectivity to permanent water bodies) predominately influenced fish assemblages, although local processes (depth–hydroperiod) were also important. Furthermore, no colonizing species went locally extinct before wetlands began to dry. Our findings suggest that large-scale processes that influence colonization dynamics are of more importance than small-scale processes that influence extinction dynamics. Finally, hydrological changes (ditching) associated with agriculture (cattle ranching) have adversely affected temporary wetland fish assemblages by reducing wetland hydroperiods and connectivity.
Resumo:
Body size is a fundamental structural characteristic of organisms, determining critical life history and physiological traits, and influencing population dynamics, community structure, and ecosystem function. For my dissertation, I focused on effects of body size on habitat use and diet of important coastal fish predators, as well as their influence on faunal communities in Bahamian wetlands. First, using acoustic telemetry and stable isotope analysis, I identified high variability in movement patterns and habitat use among individuals within a gray snapper (Lutjanus griseus) and schoolmaster snapper (L. apodus) population. This intrapopulation variation was not explained by body size, but by individual behavior in habitat use. Isotope values differed between individuals that moved further distances and individuals that stayed close to their home sites, suggesting movement differences were related to specific patterns of foraging behavior. Subsequently, while investigating diet of schoolmaster snapper over a two-year period using stomach content and stable isotope analyses, I also found intrapopulation diet variation, mostly explained by differences in size class, individual behavior and temporal variability. I then developed a hypothesis-testing framework examining intrapopulation niche variation between size classes using stable isotopes. This framework can serve as baseline to categorize taxonomic or functional groupings into specific niche shift scenarios, as well as to help elucidate underlying mechanisms causing niche shifts in certain size classes. Finally, I examined the effect of different-sized fish predators on epifaunal community structure in shallow seagrass beds using exclusion experiments at two spatial scales. Overall, I found that predator effects were rather weak, with predator size and spatial scale having no impact on the community. Yet, I also found some evidence of strong interactions on particular common snapper prey. As Bahamian wetlands are increasingly threatened by human activities (e.g., overexploitation, habitat degradation), an enhanced knowledge of the ecology of organisms inhabiting these systems is crucial for developing appropriate conservation and management strategies. My dissertation research contributed to this effort by providing critical information about the resource use of important Bahamian fish predators, as well as their effect on faunal seagrass communities.
Resumo:
In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.
Resumo:
Understanding habitat selection and movement remains a key question in behavioral ecology. Yet, obtaining a sufficiently high spatiotemporal resolution of the movement paths of organisms remains a major challenge, despite recent technological advances. Observing fine-scale movement and habitat choice decisions in the field can prove to be difficult and expensive, particularly in expansive habitats such as wetlands. We describe the application of passive integrated transponder (PIT) systems to field enclosures for tracking detailed fish behaviors in an experimental setting. PIT systems have been applied to habitats with clear passageways, at fixed locations or in controlled laboratory and mesocosm settings, but their use in unconfined habitats and field-based experimental setups remains limited. In an Everglades enclosure, we continuously tracked the movement and habitat use of PIT-tagged centrarchids across three habitats of varying depth and complexity using multiple flatbed antennas for 14 days. Fish used all three habitats, with marked species-specific diel movement patterns across habitats, and short-lived movements that would be likely missed by other tracking techniques. Findings suggest that the application of PIT systems to field enclosures can be an insightful approach for gaining continuous, undisturbed and detailed movement data in unconfined habitats, and for experimentally manipulating both internal and external drivers of these behaviors.
Resumo:
Fish stomach content records extracted from the DAPSTOM 4.5 database (held at the UK Centre for Environment, Fisheries and Aquaculture Science - CEFAS). Data collated as part of the EU Euro-Basin project and specifically concerning herring (Clupea harengus), mackerel (Scomber scombrus), blue whiting (Micromesistius poutassou), albacore (Thunnus alalunga) and bluefin tuna (Thunnus thynnus). The data set consist of 20720 records - collected throughout the northeast Atlantic, between 1906 and 2011 - mostly during routine fisheries monitoring research cruises.