988 resultados para fish predation
Resumo:
An organism’s home range dictates the spatial scale on which important processes occur (e.g. competition and predation) and directly affects the relationship between individual fitness and local habitat quality. Many reef fish species have very restricted home ranges after settlement and, here, we quantify home-range size in juveniles of a widespread and abundant reef fish in New Zealand, the common triplefin (Forsterygion lapillum). We conducted visual observations on 49 juveniles (mean size = 35-mm total length) within the Wellington harbour, New Zealand. Home ranges were extremely small, 0.053 m2 ± 0.029 (mean ± s.d.) and were unaffected by adult density, body size or substrate composition. A regression tree indicated that home-range size sharply decreased ~4.5 juveniles m–2 and a linear mixed model confirmed that home-range sizes in high-density areas (>4.5 juveniles m–2) were significantly smaller (34%) than those in low-density areas (after accounting for a significant effect of fish movement on our home-range estimates). Our results suggest that conspecific density may have negative and non-linear effects on home-range size, which could shape the spatial distribution of juveniles within a population, as well as influence individual fitness across local density gradients.
Resumo:
Two fish species, one top predator (Imparfinis mirini) and one intermediate detritivorous species (Hisonotus depressicauda), were experimentally manipulated to evaluate their relative importance in structuring the periphytic community, as well as their effects on the other trophic levels. An enclosure experiment was conducted in the Potreirinho creek, a second order tributary of Paranapanema River, SE Brazil. Five treatments were used: enclosure of the predator species. enclosure of the detritivorous species, enclosure of both together, exclusion of all fish species (closed control cage), and cage open to all fish community, (open control). Through direct and indirect effects, I. mirini, when alone gave rise to a trophic cascade that resulted in a positive effect on algal resources. Through direct effects, H. depressicauda. when alone, reduced the amount of organic matter, resulting in a positive indirect effect on algae. In addition, when the two species were enclosed together, only the effects determined by the detritivorous species were present. The results indicate the important role of the intermediate detritivorous species in the maintenance of the composition and trophic structure of the analyzed community by reducing the effects caused by the top predator.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The predation on vertebrates by birds, including bats, is very common in some families (Accipitridae, Falconidae, Tytonidae, Strigidae), constituting their main diet. For other families (except those that feed strictly on fish), it is occasional and sometimes a matter of opportunity. Here we recorded the predation on a bat (Platyrrhinus lineatus) by the neotropical bird plush-crested jay (Cyanocorax chrysops). on July 26, 2009, around 11:00 am, we recorded an individual of C. chrysops taking part of a P. lineatus on its beak. This record occurred on Jacarezinho Farm (Valparaiso [long dash] SP). The prey species identification was done by visual observation, considering the bat size and its external morphology, especially by the presence of the white dorsal bright stripe. Probably, Platyrrhinus lineatus behavior, which involves living together or in couples on tree canopies, made the capture by the plush-crested jay easier. This is a new record for the diet of C. chrysops and highlights the necessity of additional studies related to birds diet in the Neotropics, even the more conspicuous ones.
Resumo:
We observed individuals of Odontostilbe pequira, a small characid, approaching and biting individuals of larger-bodied fishes of other species. This observation was made in two clear water headwater streams of the Cuiaba basin, Paraguay River system, located in Nobres, Mato Grosso State, Brazil, which led us to investigate the behavioral interactions of these fish. We characterized behavioral interactions between species by direct underwater observations using snorkelling and video recordings. Additionally, we proceeded diet analyses of O. pequira, obtaining intestinal coefficient and the index of alimentary importance. During underwater observations we checked the relative frequency of attacks by O. pequira on larger fish species. Odontostilbe pequira attacked individually or in large groups, and the anostomid Leporinus friderici was the preferred target prey species, while Prochilodus lineatus was apparently avoided. Our study sustains that O. pequira is omnivorous, with a diet that varies seasonally. It feeds mainly on plants, but also on animal prey, including the scales of small fishes, and, possibly, the mucus and epidermis of larger fish species. We suggest the term "mutilating predation" to describe the latter relationship.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We studied the potential role as seed disperser of the pacu fish (Piaracrus mesopotamicus, Characidae) in the Pantanal of Brazil. The most important food item in the diet of the pacu in the wet season was fruits of the palm Bactris glaucescens found in the guts of 73 percent of all fishes collected (N = 70). We found a positive relationship between fish length, weight, and gape size and the number of intact seeds in their gut. Therefore, large pacus are especially important in dispersing B. glaucescens seeds within the studied system. Since the best seed dispersers are the largest fishes, which are preferred by commercial fisheries, we predict that the ongoing over fishing in freshwater ecosystems will have major impacts on the dispersal system of fish-dependent plants. We suggest that it is paramount to change the attitudes in fisheries management of fruit-eating fishes and urgent to evaluate the impact of fishing on forest regeneration.
Resumo:
The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism. © 2013 Oliveira et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Habitat structure is known to influence the abundance of fishes on temperate reefs. Biotic interactions play a major role in determining the distribution and abundance of species. The significance of these forces in affecting the abundance of fishes may hinge on the presence of organisms that either create or alter habitat. On temperate reefs, for example, macroalgae are considered autogenic ecosystem engineers because they control resource availability to other species through their physical structure and provide much of the structure used by fish. On both coral and temperate reefs, small cryptic reef fishes may comprise up to half of the fish numbers and constitute a diverse community containing many specialized species. Small cryptic fishes (<100 mm total length) may be responsible for the passage of 57% of the energy flow and constitute ca. 35% of the overall reef fish biomass on coral reefs. These benthic fish exploit restricted habitats where food and shelter are obtained in, or in relation to, conditions of substrate complexity and/or restricted living space. A range of mechanisms has been proposed to account for the diversity and the abundance of small fishes: (1) lifehistory strategies that promote short generation times, (2) habitat associations and behaviour that reduce predation and (3) resource partitioning that allows small species to coexist with larger competitors. Despite their abundance and potential importance within reef systems, little is known of the community ecology of cryptic fishes. Specifically on habitat associations many theories suggested a not clear direction on this subject. My research contributes to the development of marine fish ecology by addressing the effects of habitat characteristics upon distribution of cryptobenthic fish assemblages. My focus was on the important shallow, coastal ecosystems that often serve as nursery habitat for many fish and where different type of habitat is likely to both play important roles in organism distribution and survival. My research included three related studies: (1) identification of structuring forces on cryptic fish assemblages, such as physical and biological forcing; (2) macroalgae as potential tools for cryptic fish and identification of different habitat feature that could explain cryptic fish assemblages distribution; (3) canopy formers loss: consequences on cryptic fish and relationship with benthos modifications. I found that: (1) cryptic fish assemblages differ between landward and seaward sides of coastal breakwaters in Adriatic Sea. These differences are explained by 50% of the habitat characteristics on two sides, mainly due to presence of the Codium fragile, sand and oyster assemblages. Microhabitat structure influence cryptic fish assemblages. (2) Different habitat support different cryptic fish assemblages. High heterogeneity on benthic assemblages reflect different fish assemblages. Biogenic components that explain different and diverse cryptic fish assemblages are: anemonia bed, mussel bed, macroalgal stands and Cystoseira barbata, as canopy formers. (3) Canopy forming loss is not relevant in structuring directly cryptic fish assemblages. A removal of canopy forming algae did not affect the structure of cryptic fish assemblages. Canopy formers algae on Conero cliff, does not seem to act as structuring force, probably due to its regressive status. In conclusion, cryptic fish have been shown to have species-specific associations with habitat features relating to the biological and non biological components afforded by fish. Canopy formers algae do not explain cryptic fish assemblages distribution and the results of this study and information from the literature (both from the Mediterranean Sea and elsewhere) show that there are no univocal responses of fish assemblages. Further exanimations on an non regressive status of Cystoseira canopy habitat are needed to define and evaluate the relationship between canopy formers and fish on Mediterranean sea.
Resumo:
Background We manipulated predation risk in a field experiment with the cooperatively breeding cichlid Neolamprologus pulcher by releasing no predator, a medium- or a large-sized fish predator inside underwater cages enclosing two to three natural groups. We assessed whether helpers changed their helping behaviour, and whether within-group conflict changed, depending on these treatments, testing three hypotheses: ‘pay-to-stay’ PS, ‘risk avoidance’ RA, or (future) reproductive benefits RB. We also assessed whether helper food intake was reduced under risk, because this might reduce investments in other behaviours to save energy. Methodology/Principal Findings Medium and large helpers fed less under predation risk. Despite this effect helpers invested more in territory defence, but not territory maintenance, under the risk of predation (supporting PS). Experimentally covering only the breeding shelter with sand induced more helper digging under predation risk compared to the control treatment (supporting PS). Aggression towards the introduced predator did not differ between the two predator treatments and increased with group member size and group size (supporting PS and RA). Large helpers increased their help ratio (helping effort/breeder aggression received, ‘punishment’ by the dominant pair in the group) in the predation treatments compared to the control treatment, suggesting they were more willing to PS. Medium helpers did not show such effects. Large helpers also showed a higher submission ratio (submission/ breeder aggression received) in all treatments, compared to the medium helpers (supporting PS). Conclusions/Significance We conclude that predation risk reduces helper food intake, but despite this effect, helpers were more willing to support the breeders, supporting PS. Effects of breeder punishment suggests that PS might be more important for large compared to the medium helpers. Evidence for RA was also detected. Finally, the results were inconsistent with RB.
Resumo:
Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or without neighbors. Further studies are needed to determine the scope of commensalism as an anti-predator strategy in colonial animals.
Resumo:
Migration has evolved as a strategy to maximise individual fitness in response to seasonally changing ecological and environmental conditions. However, migration can also incur costs, and quantifying these costs can provide important clues to the ultimate ecological forces that underpin migratory behaviour. A key emerging model to explain migration in many systems posits that migration is driven by seasonal changes to a predation/growth potential (p/g) trade-off that a wide range of animals face. In this study we assess a key assumption of this model for a common cyprinid partial migrant, the roach Rutilus rutilus, which migrates from shallow lakes to streams during winter. By sampling fish from stream and lake habitats in the autumn and spring and measuring their stomach fullness and diet composition, we tested if migrating roach pay a cost of reduced foraging when migrating. Resident fish had fuller stomachs containing more high quality prey items than migrant fish. Hence, we document a feeding cost to migration in roach, which adds additional support for the validity of the p/g model of migration in freshwater systems.
Resumo:
Whereas many studies have addressed the mechanisms driving partial migration, few have focused on the consequences of partial migration on trophic dynamics, and integrated studies combining the two approaches are virtually nonexistent. Here we show that temperature affects seasonal partial migration of cyprinid fish from lakes to predation refuges in streams during winter and that this migration in combination with temperature affects the characteristics and phenology of lower trophic levels in the lake ecosystem. Specifically, our six-year study showed that the proportion of fish migrating was positively related to lake temperature during the pre-migration growth period, i.e. during summer. Migration from the lake occurred later when autumn water temperatures were high, and timing of return migration to the lake occurred earlier at higher spring water temperatures. Moreover, the winter mean size of zooplankton in the lake increased with the proportion of fish being away from the lake, likely as a consequence of decreased predation pressure. Peak biomass of phytoplankton in spring occurred earlier at higher spring water temperatures and with less fish being away from the lake. Accordingly, peak zooplankton biomass occurred earlier at higher spring water temperature, but relatively later if less fish were away from the lake. Hence, the time between phyto- and zooplankton peaks depended only on the amount of fish being away from the lake, and not on temperature. The intensity of fish migration thereby had a major effect on plankton spring dynamics. These results significantly contribute to our understanding of the interplay between partial migration and trophic dynamics, and suggest that ongoing climate change may significantly affect such dynamics.