985 resultados para fire use


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of Chicago showing the burnt district, presented by Freeman & Burr. It was published by Freeman & Burr in 1871. Scale [ca. 1:29,300]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Illinois East State Plane Coordinate System NAD83 (in Feet) (Fipszone 1201). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as the area burned by the Great Chicago Fire of 1871, roads, railroads, railroad stations, drainage, city wards, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: [San Francisco, California, showing the area destroyed by fire, April 18-21, 1906]. It was published by R.J. Waters & Co. in 1906. Scale [ca. 1:21,000]. Covers the northeastern portion of the city showing burnt district in red. The image inside the map neatline is georeferenced to the surface of the earth and fit to the California Zone III State Plane Coordinate System NAD83 (in Feet) (Fipszone 0403). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as the burnt district, roads, drainage, selected public buildings, wharves, and more. Relief shown by contours. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materials like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood burns quite easily and produces a great deal of heat energy. The main disadvantage is the high level of combustion when exposed to fire, where the point at which it catches fire is from 200–400°C. After fire exposure, is need to determine if the charred wooden structures are safe for future use. Design methods require the use of computer modelling to predict the fire exposure and the capacity of structures to resist those action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood structures exposed to fire, because predicts the charring rate as a function of fire exposure. The charring rate calculation of most structural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materials. In this work, the authors present different case studies using numerical models, that will help professionals analysing woods elements and the type of information needed to decide whether the charred structures are adequate or not to use. Different thermal models representing wooden cellular slabs, used in building construction for ceiling or flooring compartments, will be analysed and submitted to different fire scenarios (with the standard fire curve exposure). The same numerical models, considering insulation material inside the wooden cellular slabs, will be tested to compare and determine the fire time resistance and the charring rate calculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materiais like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood does bum quite easily md produces a great deal ofheat energy. The main disadvantage is the high levei ofcombustion when exposed to fíre, where the point at which it catches fire is fi-om 200-400°C. After fu-e exposure, is need to determine if the charred wooden stmctures are safe for future use. Design methods require the use ofcomputer modelling to predict the fíre exposure and the capacity ofstructures to resist fhose action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood stmctures exposed to fire, because predicts the charring rate as a fünction offire exposure. The charring rate calculation ofmost stmctural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materiais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

D (in 2 pts), Dsum also available in microfiche.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transportation Department, Secretary of Transportation, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transportation Department, Office of the Assistant Secretary for Policy and International Affairs, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AEC Report No. TID-3578.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cover title.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transportation Department, Office of Environment and Safety, Washington, D.C.