934 resultados para finite volume method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure for evaluating the dynamic structural response of elastic solid domains is presented. A prerequisite for the analysis of dynamic fluid–structure interaction is the use of a consistent set of finite volume (FV) methods on a single unstructured mesh. This paper describes a three-dimensional (3D) FV, vertex-based method for dynamic solid mechanics. A novel Newmark predictor–corrector implicit scheme was developed to provide time accurate solutions and the scheme was evaluated on a 3D cantilever problem. By employing a small amount of viscous damping, very accurate predictions of the fundamental natural frequency were obtained with respect to both the amplitude and period of oscillation. This scheme has been implemented into the multi-physics modelling software framework, PHYSICA, for later application to full dynamic fluid structure interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational modelling of dynamic fluid–structure interaction (DFSI) is a considerable challenge. Our approach to this class of problems involves the use of a single software framework for all the phenomena involved, employing finite volume methods on unstructured meshes in three dimensions. This method enables time and space accurate calculations in a consistent manner. One key application of DFSI simulation is the analysis of the onset of flutter in aircraft wings, where the work of Yates et al. [Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45° degree Sweptback Wing Planform in Air and Freon-12 in the Langley Transonic Dynamic Tunnel. NASA Technical Note D-1616, 1963] on the AGARD 445.6 wing planform still provides the most comprehensive benchmark data available. This paper presents the results of a significant effort to model the onset of flutter for the AGARD 445.6 wing planform geometry. A series of key issues needs to be addressed for this computational approach. • The advantage of using a single mesh, in order to eliminate numerical problems when applying boundary conditions at the fluid-structure interface, is counteracted by the challenge of generating a suitably high quality mesh in both the fluid and structural domains. • The computational effort for this DFSI procedure, in terms of run time and memory requirements, is very significant. Practical simulations require even finer meshes and shorter time steps, requiring parallel implementation for operation on large, high performance parallel systems. • The consistency and completeness of the AGARD data in the public domain is inadequate for use in the validation of DFSI codes when predicting the onset of flutter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhalt dieser Arbeit ist ein Verfahren zur numerischen Lösung der zweidimensionalen Flachwassergleichung, welche das Fließverhalten von Gewässern, deren Oberflächenausdehnung wesentlich größer als deren Tiefe ist, modelliert. Diese Gleichung beschreibt die gravitationsbedingte zeitliche Änderung eines gegebenen Anfangszustandes bei Gewässern mit freier Oberfläche. Diese Klasse beinhaltet Probleme wie das Verhalten von Wellen an flachen Stränden oder die Bewegung einer Flutwelle in einem Fluss. Diese Beispiele zeigen deutlich die Notwendigkeit, den Einfluss von Topographie sowie die Behandlung von Nass/Trockenübergängen im Verfahren zu berücksichtigen. In der vorliegenden Dissertation wird ein, in Gebieten mit hinreichender Wasserhöhe, hochgenaues Finite-Volumen-Verfahren zur numerischen Bestimmung des zeitlichen Verlaufs der Lösung der zweidimensionalen Flachwassergleichung aus gegebenen Anfangs- und Randbedingungen auf einem unstrukturierten Gitter vorgestellt, welches in der Lage ist, den Einfluss topographischer Quellterme auf die Strömung zu berücksichtigen, sowie in sogenannten \glqq lake at rest\grqq-stationären Zuständen diesen Einfluss mit den numerischen Flüssen exakt auszubalancieren. Basis des Verfahrens ist ein Finite-Volumen-Ansatz erster Ordnung, welcher durch eine WENO Rekonstruktion unter Verwendung der Methode der kleinsten Quadrate und eine sogenannte Space Time Expansion erweitert wird mit dem Ziel, ein Verfahren beliebig hoher Ordnung zu erhalten. Die im Verfahren auftretenden Riemannprobleme werden mit dem Riemannlöser von Chinnayya, LeRoux und Seguin von 1999 gelöst, welcher die Einflüsse der Topographie auf den Strömungsverlauf mit berücksichtigt. Es wird in der Arbeit bewiesen, dass die Koeffizienten der durch das WENO-Verfahren berechneten Rekonstruktionspolynome die räumlichen Ableitungen der zu rekonstruierenden Funktion mit einem zur Verfahrensordnung passenden Genauigkeitsgrad approximieren. Ebenso wird bewiesen, dass die Koeffizienten des aus der Space Time Expansion resultierenden Polynoms die räumlichen und zeitlichen Ableitungen der Lösung des Anfangswertproblems approximieren. Darüber hinaus wird die wohlbalanciertheit des Verfahrens für beliebig hohe numerische Ordnung bewiesen. Für die Behandlung von Nass/Trockenübergangen wird eine Methode zur Ordnungsreduktion abhängig von Wasserhöhe und Zellgröße vorgeschlagen. Dies ist notwendig, um in der Rechnung negative Werte für die Wasserhöhe, welche als Folge von Oszillationen des Raum-Zeit-Polynoms auftreten können, zu vermeiden. Numerische Ergebnisse die die theoretische Verfahrensordnung bestätigen werden ebenso präsentiert wie Beispiele, welche die hervorragenden Eigenschaften des Gesamtverfahrens in der Berechnung herausfordernder Probleme demonstrieren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semi-classical approach is used to obtain Lorentz covariant expressions for the form factors between the kink states of a quantum field theory with degenerate vacua. Implemented on a cylinder geometry it provides an estimate of the spectral representation of correlation functions in a finite volume. Illustrative examples of the applicability of the method are provided by the sine-Gordon and the broken phi(4) theories in 1 + 1 dimensions. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We apply Chiral Perturbation Theory in the p-regime and introduce the twist by means of a constant vector field. The corrections of masses, decay constants, pseudoscalar coupling constants and form factors are calculated at next-to-leading order. We detail the derivations and compare with results available in the literature. In some case there is disagreement due to a different treatment of new extra terms generated from the breaking of the cubic invariance. We advocate to treat such terms as renormalization terms of the twisting angles and reabsorb them in the on-shell conditions. We confirm that the corrections of masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. Furthermore, we show that the matrix elements of the scalar (resp. vector) form factor satisfies the Feynman–Hellman Theorem (resp. the Ward–Takahashi identity). To show the Ward–Takahashi identity we construct an effective field theory for charged pions which is invariant under electromagnetic gauge transformations and which reproduces the results obtained with Chiral Perturbation Theory at a vanishing momentum transfer. This generalizes considerations previously published for periodic boundary conditions to twisted boundary conditions. Another method to estimate the corrections in finite volume are asymptotic formulae. Asymptotic formulae were introduced by Lüscher and relate the corrections of a given physical quantity to an integral of a specific amplitude, evaluated in infinite volume. Here, we revise the original derivation of Lüscher and generalize it to finite volume with twisted boundary conditions. In some cases, the derivation involves complications due to extra terms generated from the breaking of the cubic invariance. We isolate such terms and treat them as renormalization terms just as done before. In that way, we derive asymptotic formulae for masses, decay constants, pseudoscalar coupling constants and scalar form factors. At the same time, we derive also asymptotic formulae for renormalization terms. We apply all these formulae in combination with Chiral Perturbation Theory and estimate the corrections beyond next-to-leading order. We show that asymptotic formulae for masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. A similar relation connects in an independent way asymptotic formulae for renormalization terms. We check these relations for charged pions through a direct calculation. To conclude, a numerical analysis quantifies the importance of finite volume corrections at next-to-leading order and beyond. We perform a generic Analysis and illustrate two possible applications to real simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For certain continuum problems, it is desirable and beneficial to combine two different methods together in order to exploit their advantages while evading their disadvantages. In this paper, a bridging transition algorithm is developed for the combination of the meshfree method (MM) with the finite element method (FEM). In this coupled method, the meshfree method is used in the sub-domain where the MM is required to obtain high accuracy, and the finite element method is employed in other sub-domains where FEM is required to improve the computational efficiency. The MM domain and the FEM domain are connected by a transition (bridging) region. A modified variational formulation and the Lagrange multiplier method are used to ensure the compatibility of displacements and their gradients. To improve the computational efficiency and reduce the meshing cost in the transition region, regularly distributed transition particles, which are independent of either the meshfree nodes or the FE nodes, can be inserted into the transition region. The newly developed coupled method is applied to the stress analysis of 2D solids and structures in order to investigate its’ performance and study parameters. Numerical results show that the present coupled method is convergent, accurate and stable. The coupled method has a promising potential for practical applications, because it can take advantages of both the meshfree method and FEM when overcome their shortcomings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, natural convection heat transfer and buoyancy driven flows have been investigated in a right angled triangular enclosure. The heater located on the bottom wall while the inclined wall is colder and the remaining walls are maintained as adiabatic. Governing equations of natural convection are solved through the finite volume approach, in which buoyancy is modeled via the Boussinesq approximation. Effects of different parameters such as Rayleigh number, aspect ratio, prantdl number and heater location are considered. Results show that heat transfer increases when the heater is moved toward the right corner of the enclosure. It is also revealed that increasing the Rayleigh number, increases the strength of free convection regime and consequently increases the value of heat transfer rate. Moreover, larger aspect ratio enclosure has larger Nusselt number value. In order to have better insight, streamline and isotherms are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a hybrid smoothed finite element method (H-SFEM) is developed for solid mechanics problems by combining techniques of finite element method (FEM) and Node-based smoothed finite element method (NS-FEM) using a triangular mesh. A parameter is equipped into H-SFEM, and the strain field is further assumed to be the weighted average between compatible stains from FEM and smoothed strains from NS-FEM. We prove theoretically that the strain energy obtained from the H-SFEM solution lies in between those from the compatible FEM solution and the NS-FEM solution, which guarantees the convergence of H-SFEM. Intensive numerical studies are conducted to verify these theoretical results and show that (1) the upper and lower bound solutions can always be obtained by adjusting ; (2) there exists a preferable at which the H-SFEM can produce the ultrasonic accurate solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a two-dimensional space-fractional reaction diffusion equation with a fractional Laplacian operator and homogeneous Neumann boundary conditions. The finite volume method is used with the matrix transfer technique of Ilić et al. (2006) to discretise in space, yielding a system of equations that requires the action of a matrix function to solve at each timestep. Rather than form this matrix function explicitly, we use Krylov subspace techniques to approximate the action of this matrix function. Specifically, we apply the Lanczos method, after a suitable transformation of the problem to recover symmetry. To improve the convergence of this method, we utilise a preconditioner that deflates the smallest eigenvalues from the spectrum. We demonstrate the efficiency of our approach for a fractional Fisher’s equation on the unit disk.