249 resultados para fibrils


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brown adipose tissue and liver of hibernating, arousing and euthermic individuals of the dormouse Muscardinus avellanarius were studies using ultrastructural cytochemistry and immunocytochemistry with the aim to investigate possible fine structural modifications of the cell nucleus during the seasonal cycle. The general morphology of brown adipocyte and hepatocyte nuclei was similar in the three experimental groups. However, three nuclear structural constituents were identified only in hibernating individuals: coiled bodies (CBs) and amorphous bodies (ABs) were observed in hepatocytes and, together with bundles of nucleoplasmic fibrils (NF), were present in brown adipocytes of hibernating dormice. In arousing animals only some structural constituents suggestive of poorly structured CBs were found. The latter showed the same immunocytochemical features as CBs of hibernating individuals, suggesting that they are disappearing CBs. A possible involvement of CBs in storing and/or processing RNA which must be rapidly and abundantly released upon arousal is discussed. ABs similarly to CBs contain RNA and nucleoplasmic ribonucleoproteins (RNPs) and could also be involved in mRNA pathways. NF do not contain nucleic acids or RNPs and seem to be composed of protein-aceous material; their functional role in the nuclear metabolism of hibernating brown adipocytes remains unclear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical behaviour of ectodermal cells in the area opaca and the supracellular organization of fibronectin in the adjacent extracellular matrix were studied in whole chick blastoderms developing in vitro. The pattern of spontaneous mechanical activity and its modification by immunoglobulins against fibronectin were determined using a real-time image-analysis system. The pattern of fibronectin was studied using immunocytochemical techniques. It was found that the ectodermal cells in the area opaca actively develop a radially oriented contraction, which leads to a distension of the area pellucida from which the embryo develops. Abnormally increased tension resulted in perturbations of gastrulation and neurulation. An optimized mechanical equilibrium within the blastoderm seems to be necessary for normal development. Anti-fibronectin antibodies applied to the basal side of the blastoderm led rapidly and reversibly to an increase of tension in the contracted cells. This observation indicates that modifications of the extracellular matrix can be transmitted to cytoskeletal elements within adjacent cells. The extracellular matrix of the area opaca contains fibronectin arranged in radially oriented fibrils. This orientation corresponds to the direction of migration of the mesodermal cells. Interestingly, the radial pattern of fibronectin is found in the regions where the ectodermal cells are contracted and develop radially oriented forces. This observation suggests that the supracellular assembly of the extracellular materials could be influenced by the mechanical activity of adjacent cells. Possible modulations of the supracellular organization of extracellular matrix by other factors, e.g. diffusible metabolites, is also discussed. The presence of characteristically organized extracellular matrix components, of spatially differentiated cell activities and of reciprocal interactions between them makes the young chick blastoderm an excellent system for physiological studies of the coordinated cellular activities that lead to changes in form, complexity and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME L'architecture nucléaire ainsi que l'ultrastructure des microtubules ont été abondamment étudiées par des méthodes cytochimiques utilisant des échantillons fixés chimiquement, enrobés dans des résines ou fixés à basse température. Les échantillons fixés à basse température pouvant aussi avoir été substitués, déshydratés et enrobés dans des résines pour la plupart hydrophiles. Ici, nous avons étendu ces études en utilisant la microscopie électronique effectuée sur des sections hydratées (CEMOVIS) permettant d'observer les échantillons dans un état le plus proche de leur état natif. De plus, nous avons effectué de la tomographie électronique sur des sections hydratées (TOVIS) afin d'obtenir une vision tridimensionnelle de : 1) la périphérie du noyau et de la région périchromatinienne et 2) de la lumière des microtubules. Concernant l'architecture nucléaire Nos observations montrent que le nucléole et la chromatine condensée sont facilement visualisés grâce à la texture spécifique qu'ils arborent. Au contraire, la visualisation de domaines nucléaires importants et spécialement ceux qui contiennent des ribonucléoprotéines, est rendue difficile, à cause du faible contraste qui caractérise l'espace interchromatinien. Ceci est essentiellement dû à la quantité d'information présente dans le volume de la section qui semble être superposée, lorsque observée sur des micrographies en deux dimensions. La tomographie nous a permis de mieux visualiser les différentes régions du noyau. Les mottes de chromatine condensée sont décorées à leur périphérie (région périchromatinienne), par nombre de fibrilles et granules. Des tunnels d'espace interchromatinien sont occasionnellement observés en train de traverser des régions de chromatine condensée favorisant l'accès aux pores nucléaires. Enfin, nous avons pu, au niveau d'un pore unique, observer la plupart des structures caractéristiques du complexe de pore nucléaire. Concernant l'ultrastructure des microtubules: Nous avons démontré que la polarité d'un microtubule observé in situ en section transversale, par CEMOVIS, est directement déduite de l'observation de la chiralité de ses protofilaments. Cette chiralité, a été établie précédemment comme étant liée à la morphologie des sous unités de tubuline. La tomographie électronique effectuée sur des sections hydratées, nous a permis d'observer les microtubules dans leur contexte cellulaire avec une résolution suffisante pour visualiser des détails moléculaires, comme les monomères de tubuline. Ainsi, des molécules n'ayant pas encore été caractérisées, ont été observées dans la lumière des microtubules. Ces observations ont été effectuées autant sur des cellules observées en coupe par CEMOVIS que sur des cellules congelées dans leur totalité par immersion dans un bain d'éthane liquide. Enfin, nous avons montré que les microtubules étaient aussi de formidables objets, permettant une meilleure compréhension des artéfacts de coupe occasionnés lors de la préparation des échantillons par CEMOVIS. Les buts des études qui seront menées â la suite de ce travail seront de 1) essayer de localiser des domaines nucléaires spécifiques par des approches cytochimiques avant la congélation des cellules. 2) Appliquer des méthodes de moyennage afin d'obtenir un modèle tridimensionnel de la structure du complexe de pore nucléaire dans son contexte cellulaire. 3) Utiliser des approches biochimiques afin de déterminer la nature exacte des particules qui se trouvent dans la lumière des microtubules. ABSTRACT Nuclear architecture as well as microtubule ultrastructure have been extensively investigated by means of different methods of ultrastructural cytochemistry using chemically fixed and resin embedded samples or following cryofixation, cryosubstitution and embedding into various, especially partially hydrophilic resins. Here, we extend these studies using cryoelectron microscopy of vitreous sections (CEMOVIS) which allows one to observe the specimen as close as possible to its native state. Furthermore, we applied cryoelectron tomography of vitreous sections (TOVIS) in order to obtain athree-dimensional view of: 1) the nuclear periphery, and of the perichromatin region, and 2) the microtubule lumen. Concerning the nuclear architecture: Our observations show that nucleoli and condensed chromatin are well recognisable due to their specific texture. Conversely, the visualisation of other important nuclear domains, especially those containing ribonucleoproteins, is seriously hampered by a generally low contrast of the interchromatin region. This is mainly due to the plethora of information superposed in the volume of the section observed on two-dimensional micrographs. Cryoelectron tomography allowed us to better visualise nuclear regions. Condensed chromatin clumps are decorated on their periphery, the perichromatin region, by numerous fibrils and granules. Tunnels of interchromatin space can occasionally be found as crossing condensed chromatin regions, thus, allowing the access to nuclear pores. Finally, we were able to use TOVIS to directly distinguish most of the nuclear pore complex structures, at the level of a single pore. Concerning the microtubule ultrastructure: We have demonstrated that the polarity of across-sectioned microtubule observed in situ by CEMOVIS wás directly deducible from the visualisation of the tubulin protofiíaments' chirality. This chirality has been established before as related to the shape. of the tubulin subunits. Cryoelectron tomography allowed us to observe microtubules in their cellular context at a resolution sufficient to resolve molecular details such as their tubulin monomers. In this way, uncharacterized molecules were visualised in the microtubule lumen. These observations were made either on samples prepared by CEMOVIS or plunge freezing of whole cells. Finally, we have shown that microtubules are also relevant objects for the understanding of cutting artefacts, when performing CEMOVIS. The goals of our further studies will be to: 1) try to speciifically target different nuclear domains by cytochemical approaches in situ, prior to cryofixation. 2) Apply averaging methods in order to obtain a three-dimensional model of the nuclear pore complex at work, in its cellular context. 3) Use biochemical analysis combined in a second time to immunocytochemical approaches, to determine the exact nature of the microtubule's luminal particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Archaeological leather samples recovered from the ice field at the Schnidejoch Pass (altitude 2756 m amsl) in the western Swiss Alps were studied using optical, chemical molecular and isotopic (delta(13)C and delta(15)N of the bulk leather, and compound-specific delta(13)C analyses of the organic-solvent extracted fatty acids) methods to obtain insight into the origin of the leather and ancient tanning procedures. For comparison, leathers from modern native animals in alpine environment (red deer, goat, sheep, chamois, and calf/cow) were analyzed using the same approach. Optical and electron microscopically comparisons of Schnidejoch and modern leathers showed that the gross structure (pattern of collagen fibrils and intra-fibrils material) of archaeological leather had survived essentially intact for five millennia. The SEM studies of the hairs from the most important archaeological find, a Neolithic leather legging, show a wave structure of the hair cuticle, which is a diagnostic feature for goatskins. The variations of the bulk delta(13)C and delta(15)N values, and delta(13)C values of the main fatty acids are within the range expected for pre-industrial temperate C(3) environment. The archaeological leather samples contain a mixture of indigenous (from the animal) and exogenous plant/animal lipids. An important amount of waxy n-alkanes, n-alkan-1-ols and phytosterols (beta-sitosterol, sitostanol) in all samples, and abundant biomarker of conifers (nonacosan-10-01) in the legging leathers clearly indicate that the Neolithic people were active in a subalpine coniferous forest, and that they used an aqueous extract of diverse plant material for tanning leather. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amyloid β-peptide (Aβ) fibril deposition on cerebral vessels produces cerebral amyloid angiopathy that appears in the majority of Alzheimer's disease patients. An early onset of a cerebral amyloid angiopathy variant called hereditary cerebral hemorrhage with amyloidosis of the Dutch type is caused by a point mutation in Aβ yielding AβGlu22→Gln. The present study addresses the effect of amyloid fibrils from both wild-type and mutated Aβ on vascular cells, as well as the putative protective role of antioxidants on amyloid angiopathy. For this purpose, we studied the cytotoxicity induced by Aβ1–40 Glu22→Gln and Aβ1–40 wild-type fibrils on human venule endothelial cells and rat aorta smooth muscle cells. We observed that AβGlu22→Gln fibrils are more toxic for vascular cells than the wild-type fibrils. We also evaluated the cytotoxicity of Aβ fibrils bound with acetylcholinesterase (AChE), a common component of amyloid deposits. Aβ1–40 wild-type–AChE fibrillar complexes, similar to neuronal cells, resulted in an increased toxicity on vascular cells. Previous reports showing that antioxidants are able to reduce the toxicity of Aβ fibrils on neuronal cells prompted us to test the effect of vitamin E, vitamin C, and 17β-estradiol on vascular damage induced by Aβwild-type and AβGlu22→Gln. Our data indicate that vitamin E attenuated significantly the Aβ-mediated cytotoxicity on vascular cells, although 17β-estradiol and vitamin C failed to inhibit the cytotoxicity induced by Aβ fibrils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dense granular bodies (DGB) are particular structural constituents observed in cell nuclei of different tissues-liver, pancreas, brown adipose tissue, adrenal cortex-of hibernating dormice. They appear as strongly electron-dense clusters of closely packed granules, with thin fibrils spreading out at their periphery. DGB always occur in the nucleoplasm, sometimes making contact with other nuclear structural constituents typical of the hibernating state, such as coiled bodies, amorphous bodies and nucleoplasmic fibrils. DGB are present only during deep hibernation and rapidly disappear upon arousal from hibernation. Cytochemical and immunocytochemical analyses showed that DGB contain ribonucleoproteins and several nucleoplasmic RNA processing factors, suggesting that DGB can represent accumulation sites of splicing factors which are provided to splicing sites when normal metabolic activity is rapidly restored during arousal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: This study aimed to highlight structural corneal changes in a model of type 2 diabetes, using in vivo corneal confocal microscopy (CCM). The abnormalities were also characterized by transmission electron microscopy (TEM) and second harmonic generation (SHG) microscopy in rat and human corneas. METHODS: Goto-Kakizaki (GK) rats were observed at age 12 weeks (n = 3) and 1 year (n = 6), and compared to age-matched controls. After in vivo CCM examination, TEM and SHG microscopy were used to characterize the ultrastructure and the three-dimensional organization of the abnormalities. Human corneas from diabetic (n = 3) and nondiabetic (n = 3) patients were also included in the study. RESULTS: In the basal epithelium of GK rats, CCM revealed focal hyper-reflective areas, and histology showed proliferative cells with irregular basement membrane. In the anterior stroma, extracellular matrix modifications were detected by CCM and confirmed in histology. In the Descemet's membrane periphery of all the diabetic corneas, hyper-reflective deposits were highlighted using CCM and characterized as long-spacing collagen fibrils by TEM. SHG microscopy revealed these deposits with high contrast, allowing specific detection in diabetic human and rat corneas without preparation and characterization of their three-dimensional organization. CONCLUSION: Pathologic findings were observed early in the development of diabetes in GK rats. Similar abnormalities have been found in corneas from diabetic patients. TRANSLATIONAL RELEVANCE: This multidisciplinary study highlights diabetes-induced corneal abnormalities in an animal model, but also in diabetic donors. This could constitute a potential early marker for diagnosis of hyperglycemia-induced tissue changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in kerato-epithelin are responsible for a group of hereditary cornea-specific deposition diseases, 5q31-linked corneal dystrophies. These conditions are characterized by progressive accumulation of protein deposits of different ultrastructure. Herein, we studied the corneas with mutations at kerato-epithelin residue Arg-124 resulting in amyloid (R124C), non-amyloid (R124L), and a mixed pattern of deposition (R124H). We found that aggregated kerato-epithelin comprised all types of pathological deposits. Each mutation was associated with characteristic changes of protein turnover in corneal tissue. Amyloidogenesis in R124C corneas was accompanied by the accumulation of N-terminal kerato-epithelin fragments, whereby species of 44 kDa were the major constituents of amyloid fibrils. R124H corneas with prevailing non-amyloid inclusions showed accumulation of a new 66-kDa species altogether with the full-size 68-kDa form. Finally, in R124L cornea with non amyloid deposits, we found only the accumulation of the 68-kDa form. Two-dimensional gels revealed mutation-specific changes in the processing of the full-size protein in all affected corneas. It appears that substitutions at the same residue (Arg-124) result in cornea-specific deposition of kerato-epithelin via distinct aggregation pathways each involving altered turnover of the protein in corneal tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a Spanish family with autosomal-dominant non-neuropathic hereditary amyloidosis with a unique hepatic presentation and death from liver failure, usually by the sixth decade. The disease is caused by a previously unreported deletion/insertion mutation in exon 4 of the apolipoprotein AI (apoAI) gene encoding loss of residues 60-71 of normal mature apoAI and insertion at that position of two new residues, ValThr. Affected individuals are heterozygous for this mutation and have both normal apoAI and variant molecules bearing one extra positive charge, as predicted from the DNA sequence. The amyloid fibrils are composed exclusively of NH2-terminal fragments of the variant, ending mainly at positions corresponding to residues 83 and 92 in the mature wild-type sequence. Amyloid fibrils derived from the other three known amyloidogenic apoAI variants are also composed of similar NH2-terminal fragments. All known amyloidogenic apoAI variants carry one extra positive charge in this region, suggesting that it may be responsible for their enhanced amyloidogenicity. In addition to causing a new phenotype, this is the first deletion mutation to be described in association with hereditary amyloidosis and it significantly extends the value of the apoAI model for investigation of molecular mechanisms of amyloid fibrillogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adrenocortical cell nuclei of the dormouse Muscardinus avellanarius were investigated by electron microscopic immunocytochemistry in hibernating, arousing and euthermic individuals. While the basic structural constituents of the cell nucleus did not significantly modify in the three groups, novel structural components were found in nuclei of hibernating dormice. Lattice-like bodies (LBs), clustered granules (CGs), fibrogranular material (FGM) and granules associated with bundles of nucleoplasmic fibrils (NF) all contained ribonucleoproteins (RNPs), as shown by labeling with anti-snRNP (small nuclear RNP), anti-m3G-capped RNA and anti-hnRNP (heterogeneous nuclear RNP) antibodies. Moreover, the FGM also showed immunoreactivity for the proliferation associated nuclear antigen (PANA) and the non-snRNP splicing factor SC-35. All these nuclear structural components disappeared early during arousal and were not found in euthermic animals. These novel RNP-containing structures, which have not been observed in other tissues investigated so far in the same animal model, could represent storage and/or processing sites for pre-mRNA during the extreme metabolic condition of hibernation, to be quickly released upon arousal. NFs, which had been sometimes found devoid of associated granules in nuclei of brown adipose tissue from hi-bernating dormice, were present in much higher amounts in adrenocortical cell nuclei; they do not contain RNPs and their role remains to be elucidated. The possible roles of these structures are discussed in the frame of current knowledge of morpho-functional relationships in the cell nucleus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a Spanish family with autosomal-dominant non-neuropathic hereditary amyloidosis with a unique hepatic presentation and death from liver failure, usually by the sixth decade. The disease is caused by a previously unreported deletion/insertion mutation in exon 4 of the apolipoprotein AI (apoAI) gene encoding loss of residues 60-71 of normal mature apoAI and insertion at that position of two new residues, ValThr. Affected individuals are heterozygous for this mutation and have both normal apoAI and variant molecules bearing one extra positive charge, as predicted from the DNA sequence. The amyloid fibrils are composed exclusively of NH2-terminal fragments of the variant, ending mainly at positions corresponding to residues 83 and 92 in the mature wild-type sequence. Amyloid fibrils derived from the other three known amyloidogenic apoAI variants are also composed of similar NH2-terminal fragments. All known amyloidogenic apoAI variants carry one extra positive charge in this region, suggesting that it may be responsible for their enhanced amyloidogenicity. In addition to causing a new phenotype, this is the first deletion mutation to be described in association with hereditary amyloidosis and it significantly extends the value of the apoAI model for investigation of molecular mechanisms of amyloid fibrillogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunoglobulin light chain (AL) amyloidosis is a systemic disease caused by a plasma cell clone synthesizing an unstable light chain, which forms amyloid fibrils. Deposition of amyloid fibrils affects primarily kidney, heart, nervous system, spleen, liver, gastrointestinal tract and the skin. Skin bleeding in these patients is called amyloid purpura. Classically, it occurs spontaneously and bilaterally in the periorbital region. Vessel wall fragility and damage by amyloid are the principal causes of periorbital and gastrointestinal bleeding. Additionally, coagulation factor inhibitory circulating paraprotein, hyperfibrinolysis, platelet dysfunction or isolated acquired factor X deficiency may contribute to even more severe, diffuse bleedings. Early diagnosis remains essential for improving prognosis of patients with AL amyloidosis. Although pictures of amyloid purpura have been often reported in the literature, the clinical diagnosis may be delayed. We report a case of cutaneous manifestation of AL amyloidosis diagnosed not until one year after the appearance of the first symptoms. Diagnostic work-up revealed that the patient suffered from multiple myeloma with secondary AL amyloidosis. Atraumatic ecchymoses at the face, particularly the eyelids as well as in the neck should raise the suspicion of AL amyloidosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under optimal non-physiological conditions of low concentrations and low temperatures, proteins may spontaneously fold to the native state, as all the information for folding lies in the amino acid sequence of the polypeptide. However, under conditions of stress or high protein crowding as inside cells, a polypeptide may misfold and enter an aggregation pathway resulting in the formation of misfolded conformers and fibrils, which can be toxic and lead to neurodegenerative illnesses, such as Alzheimer's, Parkinson's or Huntington's diseases and aging in general. To avert and revert protein misfolding and aggregation, cells have evolved a set of proteins called molecular chaperones. Here, I focussed on the human cytosolic chaperones Hsp70 (DnaK) and HspllO, and co-chaperone Hsp40 (DnaJ), and the chaperonin CCT (GroEL). The cytosolic molecular chaperones Hsp70s/Hspll0s and the chaperonins are highly upregulated in bacterial and human cells under different stresses and are involved both in the prevention and the reversion of protein misfolding and aggregation. Hsp70 works in collaboration with Hsp40 to reactivate misfolded or aggregated proteins in a strict ATP dependent manner. Chaperonins (CCT and GroEL) also unfold and reactivate stably misfolded proteins but we found that it needed to use the energy of ATP hydrolysis in order to evict over- sticky misfolded intermediates that inhibited the unfoldase catalytic sites. Ill In this study, we initially characterized a particular type of inactive misfolded monomeric luciferase and rhodanese species that were obtained by repeated cycles of freeze-thawing (FT). These stable misfolded monomeric conformers (FT-luciferase and FT-rhodanese) had exposed hydrophobic residues and were enriched with wrong ß-sheet structures (Chapter 2). Using FT-luciferase as substrate, we found that the Hsp70 orthologs, called HspllO (Sse in yeast), acted similarly to Hsp70 as were bona fide ATP- fuelled polypeptide unfoldases and was much more than a mere nucleotide exchange factor, as generally thought. Moreover, we found that HspllO collaborated with Hsp70 in the disaggregation of stable protein aggregates in which Hsp70 and HspllO acted as equal partners that synergistically combined their individual ATP-consuming polypeptide unfoldase activities to reactivate the misfolded/aggregated proteins (Chapter 3). Using FT-rhodanese as substrate, we found that chaperonins (GroEL and CCT) could catalytically reactivate misfolded rhodanese monomers in the absence of ATP. Also, our results suggested that encaging of an unfolding polypeptide inside the GroEL cavity under a GroES cap was not an obligatory step as generally thought (Chapter 4). Further, we investigated the role of Hsp40, a J-protein co-chaperone of Hsp70, in targeting misfolded polypeptides substrates onto Hsp70 for unfolding. We found that even a large excess of monomeric unfolded a-synuclein did not inhibit DnaJ, whereas, in contrast, stable misfolded a-synuclein oligomers strongly inhibited the DnaK-mediated chaperone reaction by way of sequestering the DnaJ co-chaperone. This work revealed that DnaJ could specifically distinguish, and bind potentially toxic stably aggregated species, such as soluble a-synuclein oligomers involved in Parkinson's disease, and with the help of DnaK and ATP convert them into from harmless natively unfolded a-synuclein monomers (chapter 5). Finally, our meta-analysis of microarray data of plant and animal tissues treated with various chemicals and abiotic stresses, revealed possible co-expressions between core chaperone machineries and their co-chaperone regulators. It clearly showed that protein misfolding in the cytosol elicits a different response, consisting of upregulating the synthesis mainly of cytosolic chaperones, from protein misfolding in the endoplasmic reticulum (ER) that elicited a typical unfolded protein response (UPR), consisting of upregulating the synthesis mainly of ER chaperones. We proposed that drugs that best mimicked heat or UPR stress at increasing the chaperone load in the cytoplasm or ER respectively, may prove effective at combating protein misfolding diseases and aging (Chapter 6).  - Dans les conditions optimales de basse concentration et de basse température, les protéines vont spontanément adopter un repliement natif car toutes les informations nécessaires se trouvent dans la séquence des acides aminés du polypeptide. En revanche, dans des conditions de stress ou de forte concentration des protéines comme à l'intérieur d'une cellule, un polypeptide peu mal se replier et entrer dans un processus d'agrégation conduisant à la formation de conformères et de fibrilles qui peuvent être toxiques et causer des maladies neurodégénératives comme la maladie d'Alzheimer, la maladie de Parkinson ou la chorée de Huntington. Afin d'empêcher ou de rectifier le mauvais repliement des protéines, les cellules ont développé des protéines appelées chaperonnes. Dans ce travail, je me suis intéressé aux chaperonnes cytosoliques Hsp70 (DnaK) et HspllO, la co-chaperones Hsp40 (DnaJ), le complexe CCT/TRiC et GroEL. Chez les bactéries et les humains, les chaperonnes cytosoliques Hsp70s/Hspl 10s et les « chaperonines» sont fortement activées par différentes conditions de stress et sont toutes impliquées dans la prévention et la correction du mauvais repliement des protéines et de leur agrégation. Hsp70 collabore avec Hsp40 pour réactiver les protéines agrégées ou mal repliées et leur action nécessite de 1ATP. Les chaperonines (GroEL) déplient et réactivent aussi les protéines mal repliées de façon stable mais nous avons trouvé qu'elles utilisent l'ATP pour libérer les intermédiaires collant et mal repliés du site catalytique de dépliage. Nous avons initialement caractérisé un type particulier de formes stables de luciférase et de rhodanese monomériques mal repliées obtenues après plusieurs cycles de congélation / décongélation répétés (FT). Ces monomères exposaient des résidus hydrophobiques et étaient plus riches en feuillets ß anormaux. Ils pouvaient cependant être réactivés par les chaperonnes Hsp70+Hsp40 (DnaK+DnaJ) et de l'ATP, ou par Hsp60 (GroEL) sans ATP (Chapitre 2). En utilisant la FT-Luciferase comme substrat nous avons trouvé que HspllO (un orthologue de Hsp70) était une authentique dépliase, dépendante strictement de l'ATP. De plus, nous avons trouvé que HspllO collaborait avec Hsp70 dans la désagrégation d'agrégats stables de protéines en combinant leurs activités dépliase consommatrice d'ATP (Chapitre 3). En utilisant la FT-rhodanese, nous avons trouvé que les chaperonines (GroEL et CCT) pouvaient réactiver catalytiquement des monomères mal repliés en absence d'ATP. Nos résultats suggérèrent également que la capture d'un polypeptide en cours de dépliement dans la cavité de GroEL et sous un couvercle du complexe GroES ne serait pas une étape obligatoire du mécanisme, comme il est communément accepté dans la littérature (Chapitre 4). De plus, nous avons étudié le rôle de Hsp40, une co-chaperones de Hsp70, dans l'adressage de substrats polypeptidiques mal repliés vers Hsp70. Ce travail a révélé que DnaJ pouvait différencier et lier des polypeptide mal repliés (toxiques), comme des oligomères d'a-synucléine dans la maladie de Parkinson, et clairement les différencier des monomères inoffensifs d'a-synucléine (Chapitre 5). Finalement une méta-analyse de données de microarrays de tissus végétaux et animaux traités avec différents stress chimiques et abiotiques a révélé une possible co-expression de la machinerie des chaperonnes et des régulateurs de co- chaperonne. Cette meta-analyse montre aussi clairement que le mauvais repliement des protéines dans le cytosol entraîne la synthèse de chaperonnes principalement cytosoliques alors que le mauvais repliement de protéines dans le réticulum endoplasmique (ER) entraine une réponse typique de dépliement (UPR) qui consiste principalement en la synthèse de chaperonnes localisées dans l'ER. Nous émettons l'hypothèse que les drogues qui reproduisent le mieux les stress de chaleur ou les stress UPR pourraient se montrer efficaces dans la lutte contre le mauvais repliement des protéines et le vieillissement (Chapitre 6).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrins are heterodimeric cell adhesion receptors involved in cell-cell and cell-extracellular matrix (ECM) interactions. They transmit bidirectional signals across the cell membrane. This results in a wide range of biological events from cell differentiation to apoptosis. alpha2beta1 integrin is an abundant collagen receptor expressed on the surface of several cell types. In addition to ECM ligands, alpha2beta1 integrins are bound by echovirus 1 (EV1) which uses alpha2beta1 as a receptor to initiate its life cycle in the infected cell. The aim of this thesis project was to provide further insight into the mechanisms of alpha2beta1 integrin ligand recognition and receptor activation. Collagen fibrils are the principal tensile elements of the ECM. Yet, the interaction of alpha2beta1 integrin with the fibrillar form of collagen I has received relatively little attention. This research focused on the ability of alpha2beta1 integrin to act as a receptor for type I collagen fibrils. Also the molecular requirements of the EV1 interaction with alpha2beta1 were studied. Conventionally, ligand binding has been suggested to require integrin activation and the binding may further trigger integrin signalling. Another main objective of this study was to elucidate both the inside-out and outside-in signalling mechanisms of alpha2beta1 integrin in adherent cells. The results indicated that alpha2beta1 integrin is the principal integrin-type collagen receptor for type I collagen fibrils, and alpha2beta1 may participate in the regulation of pericellular collagen fibrillogenesis. Furthermore, alpha2beta1 integrin inside-out activation appeared to be synergistically regulated by integrin clustering and conformational activation. The triggering of alpha2beta1 integrin outside-in signalling, however, was shown to require both conformational changes and clustering. In contrast to ECM ligands, EV1 appeared to take advantage of the bent, inactive form of alpha2beta1 integrin in initiating its life cycle in the cell. This research together with other recent studies, has shed light on the molecular mechanisms of integrin activation. It is becoming evident that large ligands are able to bind to the bent form of integrin, which has been previously considered to be physiologically inactive. Consequently, our understanding of the conformational modulation of integrins upon activation is changing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corneal transparency is attributed to the regular spacing and diameter of collagen fibrils, and proteoglycans may play a role in fibrillogenesis and matrix assembly. Corneal scar tissue is opaque and this opacity is explained by decreased ultrastructural order that may be related to proteoglycan composition. Thus, the objectives of the present study were to characterize the proteoglycans synthesized by human corneal explants and to investigate the effect of mechanical epithelial debridement. Human corneas unsuitable for transplants were immersed in F-12 culture medium and maintained under tissue culture conditions. The proteoglycans synthesized in 24 h were labeled metabolically by the addition of 35S-sulfate to the medium. These compounds were extracted by 4 M GuHCl and identified by a combination of agarose gel electrophoresis, enzymatic degradation with protease and mucopolysaccharidases, and immunoblotting. Decorin was identified as the main dermatan sulfate proteoglycan and keratan sulfate proteoglycans were also prominent components. When the glycosaminoglycan side chains were analyzed, only keratan sulfate and dermatan sulfate were detected (~50% each). Nevertheless, when these compounds were 35S-labeled metabolically, the label in dermatan sulfate was greater than in keratan sulfate, suggesting a lower synthesis rate for keratan sulfate. 35S-Heparan sulfate also appeared. The removal of the epithelial layer caused a decrease in heparan sulfate labeling and induced the synthesis of dermatan sulfate by the stroma. The increased deposit of dermatan sulfate proteoglycans in the stroma suggests a functional relationship between epithelium and stroma that could be related to the corneal opacity that may appear after epithelial cell debridement.