999 resultados para ferroelectric crystal
Resumo:
Large scale high yield cadmium sulfide (CdS) nanowires with uniform diameter were synthesized using a rapid and simple solvo-chemical and hydrothermal route assisted by the surfactant cetyltrimethylammonium bromide (CTAB). Unique CdS nanowires of different morphologies could be selectively produced by only varying the concentration of CTAB in the reaction system with cadmium acetate, sulfur powder and ethylenediamine. We obtained CdS nanowires with diameters of 64–65 nm and lengths of up to several micrometers. A comparative study of the optical properties of ferroelectric liquid crystal (FLC) Felix-017/100 doped with 1% of CdS nanowires was performed. Response times of the order of from 160 to 180 μs, rotational viscosities of the order of from 5000 to 3000 mN s m−2 and polarizations of the order of from 10 to 70 nC cm−2 were measured. We also observed an anti-ferroelectric to ferroelectric transition for CdS doped FLC instead of the ferroelectric to paraelectric transition for pure FLC.
Resumo:
A simple and scalable chemical approach has been proposed for the generation of 1-dimensional nanostructures of two most important inorganic materials such as zinc oxide and cadmium sulfide. By controlling the growth habit of the nanostructures with manipulated reaction conditions, the diameter and uniformity of the nanowires/nanorods were tailored. We studied extensively optical behavior and structural growth of CdS NWs and ZnO NRs doped ferroelectric liquid crystal Felix-017/100. Due to doping band gap has been changed and several blue shifts occurred in photoluminescence spectra because of nanoconfinement effect and mobility of charges.
Resumo:
E.S.R. investigations of γ-irradiated ferroelectric Sodium ammonium selenate, NaNH4SeO4•2H2O and its deuteriated analogue in powder and single crystal forms have led to a deeper understanding of the nature of the ferroelectric transition of 180 K. A number of paramagnetic species formed due to γ-irradiation have been identified on the basis of their g-factors and hyperfine features from 77Se. The radical SeO4 has been used as a microprobe in studying the phase transition.
Resumo:
The system (1-x)PbTiO3-(x)BiAlO3 has been investigated with regard to its solid solubility, crystal structure, microstructure, and ferroelectric transition. The unit cell volume and the tetragonality exhibit anomalous behavior near x=0.10. The Curie point (T-C) of PbTiO3 was however found to be nearly unchanged. The study seems to suggest that the decrease in the stability of the ferroelectric state due to dilution of the Ti-sublattice by smaller sized Al+3 ions is compensated by the increase in the ferroelectric stability by the Bi+3 ions.
Resumo:
Triglycine selenate (TGSe) is isomorphous with Triglycine sulphate and is ferroelectric below 22°C. It is interesting to study the switching process in TGSe in the ferro-state with a view to comparing the results with TSG. The switching process was studied by applying electrical square pulses to produce fields up to 5 kV/cm on the sample, and measuring the parameters characterizing the transient current flowing in the sample, according to the Merz method. The temperature range in which the process was studied was 15°C to -20°C. The results were analysed by applying the Pulvari-Kuebler theory and the parameters α the activation field and µ the mobility of the domains were evaluated. It is found that µ varies with temperature in TGSe in a manner similar to TGS. µ is lesser for TGSe than for TGS for the same shift of temperature from Tc. The switching behaviour of γ-irradiated TGSe is qualitatively similar to that of unirradiated crystal eventhougth the process gets slowed down as a result of irradiation.
Resumo:
The ferroelectric polarization switching was studied in DSP single crystal and Azoxybenzene liquid film using the method described by Merz (1954). The DSP single crystal samples were in the form of plates 0.5 mm - 1.0 mm thick. The Azoxybenzene liquid film samples had a thickness from 0.025 mm - 0.125 mm. Switching in DSP was observed in the temperature range +7°C to -30°C, while in Azoxybenzene it was observed from 30°C to 70°C.
Resumo:
Raman spectra of the ferroelectric LiH3 (SeO3)2 and NaH3(SeO3)2 and the anti-ferroelectric KH3 (SeO3)2 have been recorded at room temperature using a He-Ne and also an Ar-ion laser source. The infrared absorption spectra of these crystals and their deuterated analogues have been recorded in the region 400–4000 cm−1 both below and above the Curie temperature. From an analysis of the spectrum in the region 400–900 cm−1 it is concluded that (i) in LiH3 (SeO3)2 the protons are ordered in an asymmetric double minimum potential with a low barrier and the spectrum can be interpreted in terms of HSeO3− and H2SeO3 vibrations, (ii) in NaH3 (SeO3)2 all three protons occupy a single minimum potential at room temperature and below the transition temperature the groups HSeO3− and H2SeO3 are present, (iii) the proton at the inversion centre in KH3(SeO3)2 is in a broad troughed potential well and the low temperature spectrum is more likely to be due to H3SeO3+ and SeO32− species. This deviation of the spectrum from that of the previous two crystals is attributed to the difference in H-bond scheme and hence the absence of any cooperative motion of protons in this crystal.
Resumo:
Single crystal electron spin resonance studies of Cu2+ doped ferroelectric ammonium sulphate ((NH4)2SO4, Tc = 223 K) are reported at 300 and 77 K. The Cu2+ ion is found to enter the lattice interstitially with a trigonal bipyramidal coordination. Proton superhyperfine interaction is found for magnetic field directions close to the a-axis. Changes are observed in the 77 K recordings indicating a distortion of the trigonal bipyramid consistent with crystal structure data. An increase of the proton superhyperfine constant in the ferroelectric phase is indicative of stronger hydrogen bonding. The Cu2+ ion doped as an impurity in a trigonal bipyramid environment in a diamagnetic host lattice is reported for the first time.
Resumo:
We report the synthesis and structural characterization of ferroelectric bismuth vanadate (Bi2VO5.5) (BVO) nanotubes within the nanoporous anodic aluminum oxide (AAO) templates via sol-gel method. The as-prepared BVO nanotubes were characterized by X-ray powder diffraction (XRD), Scanning Electron Microscope (SEM), High-Resolution Transmission Electron Microscope (HRTEM) and the stoichiometry of the nanotubes was established by energy-dispersive X-ray spectroscopy (EDX). Postannealed (675 degrees C for 1 h), BVO nanotubes were a polycrystalline and the XRD studies confirmed the crystal structure to be orthorhombic. The uniformity in diameter and length of the nanotubes as reveled by the TEM and SEM suggested that these were influenced to a guest extent by the thickness and pore diameter of the nanoporous AAO template. EDX analysis demonstrated the formation of stoichiometric Bi2VO5.5 phase. HRTEM confirmed that the obtained BVO nanotubes were made up of nanoparticles of 5-9 nm range. The possible formation mechanism of nanotubes was elucidated.
Resumo:
Dielectric observations on lithium hydrazinium sulphate have shown earlier that it is ferroelectric over a range of temperatures from below −15° C. to above 80° C. and a new type of hydrogen bond rearrangement which would allow the protons to migrate along the chain has also been suggested by others. The infrared spectrum of LiH z S in the form of mull and as single crystal sections parallel and perpendicular to the ‘C’ axis exhibit about 21 well-defined absorption maxima. The position and the width of the maxima agree with the known structure of the crystal according to which the hydrazine group exists in the form of the hydrazinium ion, NH2·NH3+ and the observed N+-H frequencies agree better with the new correlation curve given by R. S. Krishnan and K. Krishnan (1964). However it has been pointed out that from a comparative study of the new infrared spectra of hydrazonium sulphate and lithium ammonium sulphate that the absorption band at 969 cm.−1 is due to N-N stretching vibration and that the fairly intense band between 2050–2170 cm.−1 is due to the bending vibrations of the NH3+ group.
Resumo:
Telluric Acid Ammonium Phosphate (Te(OH)62(NH4)H2PO4(NH4)2HPO4) reffered to as TAAP is a recently discovered class m ferroelectric.1 It undergoes FE-PE transition at 48°C. Switching studies in this crystal has been carried out in the temperature range -14°C to 39°C by applying fields up to 4 kV/cm. Measurements were carried out on (101) plates cut from the crystals grown from solution. X-ray irradiation was carried out at room temperature by means of an x-ray tube operating at 25 kV and 15 mA with copper target. Air drying silver paste was used as electrodes. Samples were checked for hysteresis loop using a modified Sawyer-Tower circuit. The Ps value obtained from the loop is 2.1 μC/cm2 which is comparable to the earlier reported value. It was however noticed that the loop was slightly shifted to right with respect to the origin indicating the presence of a small internal bias which was 100 V/cm in the virgin crystal. This bias could not be removed even after repeated crystallization. On irradiation the internal biasing field increased which was indicated by a further shift of the hysteresis loop. The bias seems to saturate at about 750 V/cm for which the crystal had to be irradiated for about 3 hours.
Resumo:
The Pippard-Janovec relations are derived for correlating the anomalous elastic coefficient and the anomalous specific heat near the phase transitions of ferroelectric crystals. These relations are verified in the case of ferroelectric triglycine selenate crystal.
Resumo:
Polarization switching processes in TAAP and DTAAP have been studied by the Merz method. The switching process in DTAAP is slower than in TAAP. The temperature dependence of switching time indicates that the crystal might contain groups of domain nuclei with different activation energies. X-ray irradiation causes an increase in the threshold field below which switching could not occur and decrease in the mobility of domain walls. Irradiation decreases the peak value of dielectric constant, Tc and increases the value of coercive field. Domain structure studies on TAAP crystals have shown that the crystals grow as both predominantly single domain and multi domains, depending on which the internal bias increases or remains unaffected upon irradiation.
Resumo:
Multilayer lithium tantalate thin films were deposited on Pt-Si Si(111)/SiO2/TiO2/Pt(111)]substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 degrees C) for 15 min. The films are polycrystalline at 650 degrees C and at other annealing conditions below 650 degrees C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 degrees C. These polycrystalline films exhibit spontaneous polarization of 1.5 mu C/cm(2) at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Monophasic CaNaBi2Nb3O12 powders were synthesized via the conventional solid-state reaction route. Rietveld refinement of the X-ray powder diffraction (XRD) data and selected area electron diffraction (SAED) studies confirmed the phase to be a three-layer Aurivillius oxide associated with an orthorhombic B2cb space group. The dielectric properties of the ceramics have been studied in the 300-800 K temperature range at various frequencies (1 kHz to 1 MHz). A dielectric anomaly was observed at 676 K for all the frequencies corresponding to the ferroelectric to paraelectric phase transition as it was also corroborated by the high temperature X-ray diffraction studies. The incidence of the polarization-electric field (P vs. E) hysteresis loop demonstrated CaNaBi2Nb3O12 to be ferroelectric.