928 resultados para femoral artery
Resumo:
Purpose: Angiogenesis involves many mediators including integrins, and the tripeptide RGD is a target amino acid recognition sequence for many of them. Hindlimb ischemia is a simple and convenient animal model however standardization of the injection procedures in the devascularized and control limb is lacking, thus rendering difficult the interpretation of results. The aim of this investigations was to evaluate neovascularization in a hindlimb murine model by means of 99mTc-HYNIC-ß-Ala-RGD. Methods: 99mTc-HYNIC-RGD analog was prepared using coligands. Ischemia was induced in Wistar rats by double- ligation of the common femoral artery. Radiolabeled RGD was injected after 2h, as well as 1, 3, 5, 7, 10 and 14 days. Uptake was evaluated by planar imaging and biodistribution studies. Results: The highest ratio between ischemia and control was achieved at the 7th day (2.62 ± 0.95), with substantial decrease by the 14th day. For pertechnetate the 7th day ratio was 0.87 ± 0.23. Scintigraphic image confirmed different uptakes. Conclusion: 99mTc-HYNIC-RGD analog concentrated in ischemic tissue by the time of widespread angiogenesis and pertechnetate confirmed reduction in blood flow. In this sense, the protocol can be recommended for ischemic models.
Resumo:
The fatal outcome of a defensive attack by a giant anteater (Myrmecophaga tridactyla) is reported. The attack occurred while the victim was hunting, and his dogs cornered the adult anteater, which assumed an erect, threatening position. The hunter did not fire his rifle because of concern about accidentally shooting his dogs. He approached the animal armed with a knife, but was grabbed by its forelimbs. When his sons freed him, he had puncture wounds and severe bleeding in the left inguinal region; he died at the scene. Necroscopic examination showed femoral artery lesions and a large hematoma in the left thigh, with death caused by hypovolemic shock. A similar case is cited, and recommendations are made that boundaries between wildlife and humans be respected, especially when they coinhabit a given area.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Anestesiologia - FMB
Resumo:
This study describes the occurrence of iatrogenic hydronephrosis in left kidney with compression of the abdominal aorta in persian cat and paralysis of hind limbs. The animal had slight dehydration, pale mucous membranes, cold extremities and cyanotic, absence of bilateral femoral artery pulse, and absence of superficial and deep pain, and presence of a mass of firm consistency with six centimeters in diameter, on abdominal palpation. Performed exploratory celiotomy, there was increased left kidney compressing the abdominal aorta and dilation of the cranial left ureter attached to the uterine horn by means of ligation with nonabsorbable. After nephrectomy, it was observed the restoration of local circulation. The animal died after eight hours.
Resumo:
Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.
Resumo:
Uridine adenosine tetraphosphate (Up(4)A) has been recently identified as a novel and potent endothelium-derived contracting factor and contains both purine and pyrimidine moieties, which activate purinergic P2X and P2Y receptors. The present study was designed to compare contractile responses to Up(4)A and other nucleotides such as ATP (P2X/P2Y agonist), UTP (P2Y(2)/P2Y(4) agonist), UDP (P2Y(6) agonist), and alpha,beta-methylene ATP (P2X(1) agonist) in different vascular regions [thoracic aorta, basilar, small mesenteric, and femoral arteries] from deoxycorticosterone acetate-salt (DOCA-salt) and control rats. In DOCA-salt rats [vs. control uninephrectomized (Uni) rats]: (1) in thoracic aorta, Up(4)A-, ATP-, and UP-induced contractions were unchanged; (2) in basilar artery, Up(4)A-, ATP-, UTP- and UDP-induced contractions were increased, and expression for P2X(1), but not P2Y(2) or P2Y(6) was decreased; (3) in small mesenteric artery, Up(4)A-induced contraction was decreased and UDP-induced contraction was increased; expression of P2Y(2) and P2X(1) was decreased whereas P2Y(6) expression was increased; (4) in femoral artery, Up(4)A-. UTP-, and UDP-induced contractions were increased, but expression of P2Y(2), P2Y(6) and P2X(1) was unchanged. The alpha,beta-methylene ATP-induced contraction was bell-shaped and the maximal contraction was reached at a lower concentration in basilar and mesenteric arteries from Uni rats, compared to arteries from DOCA-salt rats. These results suggest that Up(4)A-induced contraction is heterogenously affected among various vascular beds in arterial hypertension. P2Y receptor activation may contribute to enhancement of Up(4)A-induced contraction in basilar and femoral arteries. These changes in vascular reactivity to Up(4)A may be adaptive to the vascular alterations produced by hypertension. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objetivo: avaliar os efeitos de precondicionamento isquêmico remoto (PCI-R) no modelo de transplante de intestino delgado fetal. Métodos: foram constituídos dois grupos: transplante isogênico (Iso, camundongos C57BL/6, n=24) e transplante alogênico (Alo, camundongos BALB/c, n=24). Em cada grupo, distribuíram-se os animais com e sem PCI-R, que foi realizado por oclusão da artéria femoral esquerda da fêmea prenhe durante 10 minutos, seguida por tempo igual de reperfusão. O imunossupressor utilizado foi Tacrolimo (Fk, 5 mg/kg/dia v.o.). Ao final obteve-se os seguintes subgrupos: Alo-Tx, Alo-Pci, Alo-Fk, Alo-Pci-Fk, Iso-Tx, Iso-Pci, Iso-Fk e Iso-Pci-Fk. O enxerto foi transplantado no espaço entre o músculo reto-abdominal e pré- peritoneal dos receptores a meio centímetro do apêndice xifóide, à esquerda da linha mediana. Após o sétimo dia de seguimento, o enxerto foi removido, fixado e embebido em parafina para avaliação histomorfológica (desenvolvimento e rejeição) e análise imunohistoquímica (anti-PCNA e anti-caspase-3 clivada). Os dados foram analisados usando ANOVA e testes complementares e foi considerado significante quando p <0.05. Resultados: A avaliação do desenvolvimento do enxerto no grupo de Iso mostrou que o PCI-R reduziu o desenvolvimento comparado com Iso-Tx (5,2±0,4 vs 9,0±0,8), o Fk e sua associação com PCI-R aumentaram o desenvolvimento do enxerto comparado com PCI-R (11,2±0,7 e 10,2±0,8, respectivamente). No grupo Alo, o Fk e/ou sua associação com PCI-R aumentaram o desenvolvimento comparado com Alo-Tx e Alo com PCI-R (6,0±0,8, 9,0±1,2, 0,0±0,0, 0,5±0,3, respectivamente). A expressão de PCNA foi maior no grupo ISO em animais tratados com Fk e PCI-R comparados a outros grupos (12,2±0,8 vs Tx: 8,8±0,9, PCI-R: 8,0±0,4 e Fk: 9,0±0,6). No grupo Alo, a expressão de PCNA não diferiu entre grupos. A rejeição do enxerto foi menor nos grupos tratados com PCI-R (-18%), Fk (- 68%) ou ambos (-61%) comparados com Alo-Tx. A expressão de caspase-3 clivada foi menor no grupo Iso em animais tratados com associação de PCI-R e Fk (6,2 ±0,9 vs Tx: 8,6±0,5; PCI-R: 5,8 ±0,9 e Fk: 6,0 ±0,3). Conclusão: O PCIR mostrou efeito benéfico sobre a lesão de isquemia e reperfusão do enxerto intestinal fetal nos transplantes isogênico e alogênico, aumentando o número de células caliciformes e a proliferação celular. No transplante alogênico, aumentou o desenvolvimento do enxerto, diminuiu o grau de rejeição aguda na ausência de imunossupressão, porém não apresentou efeito sinérgico com o imunossupressor. No transplante isogênico houve diminuição do grau de desenvolvimento do enxerto, porém foi efetivo na redução da apoptose.
Resumo:
[EN] During maximal whole body exercise VO2 peak is limited by O2 delivery. In turn, it is though that blood flow at near-maximal exercise must be restrained by the sympathetic nervous system to maintain mean arterial pressure. To determine whether enhancing vasodilation across the leg results in higher O2 delivery and leg VO2 during near-maximal and maximal exercise in humans, seven men performed two maximal incremental exercise tests on the cycle ergometer. In random order, one test was performed with and one without (control exercise) infusion of ATP (8 mg in 1 ml of isotonic saline solution) into the right femoral artery at a rate of 80 microg.kg body mass-1.min-1. During near-maximal exercise (92% of VO2 peak), the infusion of ATP increased leg vascular conductance (+43%, P<0.05), leg blood flow (+20%, 1.7 l/min, P<0.05), and leg O2 delivery (+20%, 0.3 l/min, P<0.05). No effects were observed on leg or systemic VO2. Leg O2 fractional extraction was decreased from 85+/-3 (control) to 78+/-4% (ATP) in the infused leg (P<0.05), while it remained unchanged in the left leg (84+/-2 and 83+/-2%; control and ATP; n=3). ATP infusion at maximal exercise increased leg vascular conductance by 17% (P<0.05), while leg blood flow tended to be elevated by 0.8 l/min (P=0.08). However, neither systemic nor leg peak VO2 values where enhanced due to a reduction of O2 extraction from 84+/-4 to 76+/-4%, in the control and ATP conditions, respectively (P<0.05). In summary, the VO2 of the skeletal muscles of the lower extremities is not enhanced by limb vasodilation at near-maximal or maximal exercise in humans. The fact that ATP infusion resulted in a reduction of O2 extraction across the exercising leg suggests a vasodilating effect of ATP on less-active muscle fibers and other noncontracting tissues and that under normal conditions these regions are under high vasoconstrictor influence to ensure the most efficient flow distribution of the available cardiac output to the most active muscle fibers of the exercising limb.
Resumo:
[EN] The purpose of this investigation was to determine the contribution of muscle O(2) consumption (mVO2) to pulmonary O(2) uptake (pVO2) during both low-intensity (LI) and high-intensity (HI) knee-extension exercise, and during subsequent recovery, in humans. Seven healthy male subjects (age 20-25 years) completed a series of LI and HI square-wave exercise tests in which mVO2 (direct Fick technique) and pVO2 (indirect calorimetry) were measured simultaneously. The mean blood transit time from the muscle capillaries to the lung (MTTc-l) was also estimated (based on measured blood transit times from femoral artery to vein and vein to artery). The kinetics of mVO2 and pVO2 were modelled using non-linear regression. The time constant (tau) describing the phase II pVO2 kinetics following the onset of exercise was not significantly different from the mean response time (initial time delay + tau) for mVO2 kinetics for LI (30 +/- 3 vs 30 +/- 3 s) but was slightly higher (P < 0.05) for HI (32 +/- 3 vs 29 +/- 4 s); the responses were closely correlated (r = 0.95 and r = 0.95; P < 0.01) for both intensities. In recovery, agreement between the responses was more limited both for LI (36 +/- 4 vs 18 +/- 4 s, P < 0.05; r = -0.01) and HI (33 +/- 3 vs 27 +/- 3 s, P > 0.05; r = -0.40). MTTc-l was approximately 17 s just before exercise and decreased to 12 and 10 s after 5 s of exercise for LI and HI, respectively. These data indicate that the phase II pVO2 kinetics reflect mVO2 kinetics during exercise but not during recovery where caution in data interpretation is advised. Increased mVO2 probably makes a small contribution to during the first 15-20 s of exercise.
Resumo:
[EN] That muscular blood flow may reach 2.5 l kg(-1) min(-1) in the quadriceps muscle has led to the suggestion that muscular vascular conductance must be restrained during whole body exercise to avoid hypotension. The main aim of this study was to determine the maximal arm and leg muscle vascular conductances (VC) during leg and arm exercise, to find out if the maximal muscular vasodilatory response is restrained during maximal combined arm and leg exercise. Six Swedish elite cross-country skiers, age (mean +/-s.e.m.) 24 +/- 2 years, height 180 +/- 2 cm, weight 74 +/- 2 kg, and maximal oxygen uptake (VO(2,max)) 5.1 +/- 0.1 l min(-1) participated in the study. Femoral and subclavian vein blood flows, intra-arterial blood pressure, cardiac output, as well as blood gases in the femoral and subclavian vein, right atrium and femoral artery were determined during skiing (roller skis) at approximately 76% of VO(2,max) and at VO(2,max) with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise) and leg skiing (predominantly leg exercise). During submaximal exercise cardiac output (26-27 l min(-1)), mean blood pressure (MAP) (approximately 87 mmHg), systemic VC, systemic oxygen delivery and pulmonary VO2(approximately 4 l min(-1)) attained similar values regardless of exercise mode. The distribution of cardiac output was modified depending on the musculature engaged in the exercise. There was a close relationship between VC and VO2 in arms (r= 0.99, P < 0.001) and legs (r= 0.98, P < 0.05). Peak arm VC (63.7 +/- 5.6 ml min(-1) mmHg(-1)) was attained during double poling, while peak leg VC was reached at maximal exercise with the diagonal technique (109.8 +/- 11.5 ml min(-1) mmHg(-1)) when arm VC was 38.8 +/- 5.7 ml min(-1) mmHg(-1). If during maximal exercise arms and legs had been vasodilated to the observed maximal levels then mean arterial pressure would have dropped at least to 75-77 mmHg in our experimental conditions. It is concluded that skeletal muscle vascular conductance is restrained during whole body exercise in the upright position to avoid hypotension.
Resumo:
Recently, the existence of a capillary-rich vasculogenic zone has been identified in adult human arteries between the tunica media and adventitia; in this area it has been postulated that Mesenchymal Stem Cells (MSCs) may be present amidst the endothelial progenitors and hematopoietic stem cells. This hypothesis is supported by several studies claiming to have found the in vivo reservoir of MSCs in post-natal vessels and by the presence of ectopic tissues in the pathological artery wall. We demonstrated that the existence of multipotent progenitors is not restricted to microvasculature; vascular wall resident MSCs (VW-MSCs) have been isolated from multidistrict human large and middle size vessels (aortic arch, thoracic aorta and femoral artery) harvested from healthy multiorgan donors. Each VW-MSC population shows characteristics of embryonic-like stem cells and exhibits angiogenic, adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic ifferentiation. Human vascular progenitor cells are also able to engraft, differentiate into mature endothelial cells and support muscle function when injected in a murine model of hind limb ischemia. Conversely, VW-MSCs isolated from calcified femoral arteries display a good response to osteogenic commitment letting us to suppose that VW-MSCs could have an important role in the onset of vascular pathologies such as Mönckeberg sclerosis. Taken together these results show two opposite roles of vascular progenitor cells and underline the importance of establishing their in vivo pathological and regenerative potential to better understand pathological events and promote different therapeutic strategies in cardiovascular research and clinical applications.
Resumo:
Recommendations stated in the TASC II guidelines for the treatment of peripheral arterial disease (PAD) regard a heterogeneous group of patients ranging from claudicants to critical limb ischaemia (CLI) patients. However, specific considerations apply to CLI patients. An important problem regarding the majority of currently available literature that reports on revascularisation strategies for PAD is that it does not focus on CLI patients specifically and studies them as a minor part of the complete cohort. Besides the lack of data on CLI patients, studies use a variety of endpoints, and even similar endpoints are often differentially defined. These considerations result in the fact that most recommendations in this guideline are not of the highest recommendation grade. In the present chapter the treatment of CLI is not based on the TASC II classification of atherosclerotic lesions, since definitions of atherosclerotic lesions are changing along the fast development of endovascular techniques, and inter-individual differences in interpretation of the TASC classification are problematic. Therefore we propose a classification merely based on vascular area of the atherosclerotic disease and the lesion length, which is less complex and eases the interpretation. Lesions and their treatment are discussed from the aorta downwards to the infrapopliteal region. For a subset of lesions, surgical revascularisation is still the gold standard, such as in extensive aorto-iliac lesions, lesions of the common femoral artery and long lesions of the superficial femoral artery (>15 cm), especially when an applicable venous conduit is present, because of higher patency and limb salvage rates, even though the risk of complications is sometimes higher than for endovascular strategies. It is however more and more accepted that an endovascular first strategy is adapted in most iliac, superficial femoral, and in some infrapopliteal lesions. The newer endovascular techniques, i.e. drug-eluting stents and balloons, show promising results especially in infrapopliteal lesions. However, most of these results should still be confirmed in large RCTs focusing on CLI patients. At some point when there is no possibility of an endovascular nor a surgical procedure, some alternative non-reconstructive options have been proposed such as lumbar sympathectomy and spinal cord stimulation. But their effectiveness is limited especially when assessing the results on objective criteria. The additional value of cell-based therapies has still to be proven from large RCTs and should therefore still be confined to a research setting. Altogether this chapter summarises the best available evidence for the treatment of CLI, which is, from multiple perspectives, completely different from claudication. The latter also stresses the importance of well-designed RCTs focusing on CLI patients reporting standardised endpoints, both clinical as well as procedural.
Resumo:
This paper will review the literature in order to define lesion characteristics that determine decision for surgical or endovascular therapy in patients with chronic critical limb ischemia (CLI). The typical pattern of disease is multilevel, infrainguinal disease. The great majority of patients with CLI can be treated by endovascular means, and the pathoanatomical pattern of disease dictates the choice of treatment modality. Long iliac artery occlusions, in particular, if associated with common femoral artery pathology and long superficial femoral artery occlusions crossing the knee joint so far remain a domain of surgery. However, there is an ongoing shift from surgery to endovascular treatment.
Resumo:
PURPOSE: To evaluate the feasibility and effectiveness of IVUS-guided puncture for gaining controlled target lumen reentry in subintimal recanalization of chronic iliac/femoral artery occlusions and in fenestration of aortic dissections. MATERIALS AND METHODS: Between 5/2004 and 12/2005 12 consecutive patients (7 male, 5 female; mean age 64.6 +/- 12.0 years) with chronic critical limb ischemia and ischemic complications of aortic dissection were treated using the Pioneer catheter. This 6.2-F dual-lumen catheter combines a 20-MHz IVUS transducer with a pre-shaped extendable, hollow 24-gauge nitinol needle. This coaxial needle allows real-time IVUS-guided puncture of the target lumen and after successful reentry a 0.014" guidewire may be advanced through the needle into the target lumen. 7 patients were treated for aortic dissection and 5 patients (with failed previous attempts at subintimal recanalization) for chronic arterial occlusion. Patients with aortic dissection (5 type A dissections, 2 type B dissections) had developed renal ischemia (n = 2), renal and mesenteric ischemia (n = 2), or low extremity ischemia (n = 3). Patients with chronic arterial occlusions (2 common iliac artery occlusions, 3 superficial femoral artery occlusions) experienced ischemic rest pain (n = 4), and a non-healing foot ulcer (n = 1). RESULTS: The technical success rate using the Pioneer catheter was 100%. The recanalization/fenestration time was 37 +/- 12 min. Procedure-related complications did not occur. In 10 cases a significant improvement of clinical symptoms was evident. One patient with aortic dissection and ischemic paraplegia required subsequent surgical intervention. One patient had persistent ischemic rest pain despite successful recanalization of a superficial femoral artery occlusion. CONCLUSION: The Pioneer catheter is a reliable device which may be helpful for achieving target lumen reentry in subintimal recanalization of chronic occlusions and in fenestration of aortic dissections.