808 resultados para fatty acids and fecundity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor α (PPARα) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARα colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARα. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARα and PPARγ but not with PPARβ and retinoid X receptor-α by protein–protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARα and PPARγ transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARα and PPARγ agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relationships among quality factors in retailed free-range, corn-fed, organic, and conventional chicken breasts (9) were modeled using chemometric approaches. Use of principal component analysis (PCA) to neutral lipid composition data explained the majority (93%) of variability (variance) in fatty acid contents in 2 significant multivariate factors. PCA explained 88 and 75% variance in 3 factors for, respectively, flame ionization detection (FID) and nitrogen phosphorus (NPD) components in chromatographic flavor data from cooked chicken after simultaneous distillation extraction. Relationships to tissue antioxidant contents were modeled. Partial least square regression (PLS2), interrelating total data matrices, provided no useful models. By using single antioxidants as Y variables in PLS (1), good models (r2 values > 0.9) were obtained for alpha-tocopherol, glutathione, catalase, glutathione peroxidase, and reductase and FID flavor components and among the variables total mono and polyunsaturated fatty acids and subsets of FID, and saturated fatty acid and NPD components. Alpha-tocopherol had a modest (r2 = 0.63) relationship with neutral lipid n-3 fatty acid content. Such factors thus relate to flavor development and quality in chicken breast meat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degree of reliance of newborn sharks on energy reserves from maternal resource allocation and the timescales over which these animals develop foraging skills are critical factors towards understanding the ecological role of top predators in marine ecosystems. We used muscle tissue stable carbon isotopic composition and fatty acid analysis of bull sharks Carcharhinus leucas to investigate early-life feeding ecology in conjunction with maternal resource dependency. Values of δ13C of some young-of-the-year sharks were highly enriched, reflecting inputs from the marine-based diet and foraging locations of their mothers. This group of sharks also contained high levels of the 20:3ω9 fatty acid, which accumulates during periods of essential fatty acid deficiency, suggesting inadequate or undeveloped foraging skills and possible reliance on maternal provisioning. A loss of maternal signal in δ13C values occurred at a length of approximately 100 cm, with muscle tissue δ13C values reflecting a transition from more freshwater/estuarine-based diets to marine-based diets with increasing length. Similarly, fatty acids from sharks >100 cm indicated no signs of essential fatty acid deficiency, implying adequate foraging. By combining stable carbon isotopes and fatty acids, our results provided important constraints on the timing of the loss of maternal isotopic signal and the development of foraging skills in relation to shark size and imply that molecular markers such as fatty acids are useful for the determination of maternal resource dependency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity is positively correlated to dietary lipid intake, and the type of lipid may play a causal role in the development of obesity-related pathologies. A major protein secreted by adipose tissue is adiponectin, which has antiatherogenic and antidiabetic properties. The aim of this study was to evaluate the effects of four different high-fat diets (enriched with soybean oil, fish oil, coconut oil, or lard) on adiponectin gene expression and secretion by the white adipose tissue (WAT) of mice fed on a selected diet for either 2 (acute treatment) or 60 days (chronic treatment). Additionally, 3T3-L1 adipocytes were treated for 48 h with six different fatty acids: palmitic, linoleic, eicosapentaenoic (EPA), docosahexaenoic (DHA), lauric, or oleic acid. Serum adiponectin concentration was reduced in the soybean-, coconut-, and lard-enriched diets in both groups. Adiponectin gene expression was lower in retroperitoneal WAT after acute treatment with all diets. The same reduction in levels of adiponectin gene expression was observed in epididymal adipose tissue of animals chronically fed soybean and coconut diets and in 3T3-L1 cells treated with palmitic, linoleic, EPA, and DHA acids. These results indicate that the intake of certain fatty acids may affect serum adiponectin levels in mice and adiponectin gene expression in mouse WAT and 3T3-L1 adipocytes. The effects appear to be time dependent and depot specific. It is postulated that the downregulation of adiponectin expression by dietary enrichment with soybean oil or coconut oil may contribute to the development of insulin resistance and atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On 2 July 2009, the EFSA Panel on Dietetic products, Nutrition and Allergies (NDA) endorsed a draft Opinion on Dietary Reference Values for fats to be released for public consultation. This Scientific Report summarises the comments received through the public consultation and outlines how these were taken into account in the final opinion. EFSA had received contributions from 40 interested parties (individuals, non-governmental organisations, industry organisations, academia and national assessment bodies). The main comments which were received during the public consultation related to: the availability of more recent data, the nomenclature used, the use of a non-European food composition data base, the impact of genetic factors in modulating the absorption, metabolism and health effects of different fatty acids, the definition of “nutritionally adequate diet”, the use of Dietary Reference Values in the labelling of foods, the translation of advice into food-based dietary guidelines, nutrient goals and recommendations, certain risk management issues, and to Dietary Reference Values of fats, individual fatty acids, and cholesterol. All the public comments received that related to the remit of EFSA were assessed and the Opinion on Dietary Reference Values for fats has been revised taking relevant comments into consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparatively simple and rapid method for the identification, estimation and preparation of fatty acids has been developed, using reversed phase circular paper chromatography. The method is also suitable for the analysis of “Critical Pairs” of fatty acids and for the preparation of fatty acids. Further, when used at a higher temperature, the method is more sensitive in revealing the presence of even traces of higher fatty acids in the seeds of Adenanthera pavonina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological, biochemical, animal model and clinical trial data described in this overview strongly suggest that polyunsaturated fatty acids, particularly n-6 fatty acids, have a role in the pathogenesis and treatment of multiple sclerosis (MS). Data presented provides further evidence for a disturbance in n-6 fatty acid metabolism in MS. Disturbance of n-6 fatty acid metabolism and dysregulation of cytokines are shown to be linked and a "proof of concept clinical trial" further supports such a hypothesis. In a randomised double-blind, placebo controlled trial of a high dose and low dose selected GLA (18:3n-6)-rich oil and placebo control, the high dose had a marked clinical effect in relapsing-remitting MS, significantly decreasing the relapse rate and the progression of disease. Laboratory findings paralleled clinical changes in the placebo group in that production of mononuclear cell pro-inflammatory cytokines (TNF-alpha, IL-1 beta) was increased and anti-inflammatory TGF-beta markedly decreased with loss of membrane n-6 fatty acids linoleic (18:2n-6) and arachidonic acids (20:4n-6). In contrast there were no such changes in the high dose group. The improvement in disability (Expanded Disability Status Scale) in the high dose suggests there maybe a beneficial effect on neuronal lipids and neural function in MS. Thus disturbed n-6 fatty acid metabolism in MS gives rise to loss of membrane long chain n-6 fatty acids and loss of the anti-inflammatory regulatory cytokine TGF-beta, particularly during the relapse phase, as well as loss of these important neural fatty acids for CNS structure and function and consequent long term neurological deficit in MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado , Engenharia Biológica, Faculdade de Engenharia de Recursos Naturais, Universidade do Algarve, 2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-chain n-3 polyunsaturated fatty acids are found in oily fish and in fish oils and similar preparations. Substantial evidence from epidemiological and case-control studies indicates that consumption of fish, oily fish and long-chain n-3 fatty acids reduces risk of cardiovascular mortality. Secondary prevention studies using long-chain n-3 fatty acids in patients post-myocardial infarction have shown a reduction in total and cardiovascular mortality with an especially potent effect on sudden death. Long-chain n-3 fatty acids have been shown to beneficially modify a range of cardiovascular risk factors, which may result in primary cardiovascular prevention. However, reduced non-fatal and fatal events and a reduction in sudden death probably involve other mechanisms. Reduced thrombosis following long-chain n-3 fatty acids may play a role. A decrease in arrhythmias is a favoured mechanism of action of long-chain n-3 fatty acids and is supported by cell culture and animal studies. However human trials using implantable cardiac defibrillators have produced inconsistent findings and a recent meta-analysis does not support this mechanism of action. An alternative mechanism of action may be stabilisation of atherosclerotic plaques by long-chain n-3 fatty acids. This is suggested by one published human study which showed that incorporation of long-chain n-3 fatty acids into plaques collected at carotid endarterectomy resulted in fewer macrophages in the plaque and a morphology indicative of increased stability. These findings are supported from observations in an animal model and suggest that the primary effect of long-chain n-3 fatty acids might be on macrophages within the plaque.