833 resultados para fatty acid binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Infants with fetal growth retardation (FGR) are prone to intestinal disorders. Objectives: Aim of the study was to determine the role of mucosal defense ability in formation of gut injury in infants with FGR. Materials and Methods: 44 premature infants who were admitted to the Neonatal Intensive Care Unit were divided into two groups: 20 infants with FGR (FGR group) and 24 appropriate-for-gestational age newborns (AGA group). Control group consisted of 22 premature infants who were delivered after uncomplicated pregnancy. Gut barrier function was evaluated by detecting serum intestinal trefoil factor (ITF) and intestinal fatty acid binding protein (IFABP). The level of serum IFABP and ITF was measured by using ELISA method. Results: FGR group showed significantly higher ITF concentration than AGA group on the first days of life (P ˂ 0.01). High level of ITF in the FGR group significantly declines up to 7th - 10th day of life (P ˂ 0.01). This reduction was accompanied by increase of IFABP which is a marker of ischemic intestinal mucosal injury. Correlation analyses showed that ITF had a negative correlation with IFABP. Conclusions: Infants with fetal growth retardation are characterized by a high level of ITF on the first days of life. This protects intestinal mucosa under hypoxic conditions. Its subsequent decline accompanied by an increase of IFABP reflects the depletion of Goblet cells to secret ITF causing damage to the integrity of intestinal mucosal barrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription of fatty acid synthase (FAS), a central enzyme in de novo lipogenesis, is dramatically induced by fasting/refeeding and insulin. We reported that upstream stimulatory factor binding to the −65 E-box is required for induction of the FAS transcription by insulin in 3T3-L1 adipocytes. On the other hand, we recently found that two upstream 5′ regions are required for induction in vivo by fasting/refeeding and insulin; one at −278 to −131 albeit at a low level, and the other at −444 to −278 with an E-box at −332 where upstream stimulatory factor functions for maximal induction. Here, we generated double transgenic mice carrying the chloramphenicol acetyltransferase reporter driven by the various 5′ deletions of the FAS promoter region and a truncated active form of the sterol regulatory element (SRE) binding protein (SREBP)-1a. We found that SREBP participates in the nutritional regulation of the FAS promoter and that the region between −278 and −131 bp is required for SREBP function. We demonstrate that SREBP binds the −150 canonical SRE present between −278 and −131, and SREBP can function through the −150 SRE in cultured cells. These in vivo and in vitro results indicate that SREBP is involved in the nutritional induction of the FAS promoter via the −278/−131 region and that the −150 SRE is the target sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sterol regulatory element-binding protein-1c (SREBP-1c) enhances transcription of genes encoding enzymes of unsaturated fatty acid biosynthesis in liver. SREBP-1c mRNA is known to increase when cells are treated with agonists of liver X receptor (LXR), a nuclear hormone receptor, and to decrease when cells are treated with unsaturated fatty acids, the end products of SREBP-1c action. Here we show that unsaturated fatty acids lower SREBP-1c mRNA levels in part by antagonizing the actions of LXR. In cultured rat hepatoma cells, arachidonic acid and other fatty acids competitively inhibited activation of the endogenous SREBP-1c gene by an LXR ligand. Arachidonate also blocked the activation of a synthetic LXR-dependent promoter in transfected human embryonic kidney-293 cells. In vitro, arachidonate and other unsaturated fatty acids competitively blocked activation of LXR, as reflected by a fluorescence polarization assay that measures ligand-dependent binding of LXR to a peptide derived from a coactivator. These data offer a potential mechanism that partially explains the long-known ability of dietary unsaturated fatty acids to decrease the synthesis and secretion of fatty acids and triglycerides in livers of humans and other animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le taux de triacylglycerol (TAG) qui s`accumule dans le tissu adipeux depend de 2 mecanismes opposes : la lipogenese et la lipolyse. Nous avons montre anterieurement que le poids des lipides du tissu adipeux de l`epididyme (EPI) de meme que leur taux augmentent chez les rats en croissance soumis a une diete hypoproteique hyperglucidique (HPHG) pendant 15 jours. La presente etude a eu pour but d`examiner les voies impliquees dans la lipogenese et la lipolyse qui regulent l`accumulation des lipides dans le tissu. On a evalue in vivo la synthese de novo des acides gras, qui s`est revelee similaire chez les rats soumis a la diete HPHG ou a une diete temoin; toutefois, chez les rats soumis a la diete HPHG, une diminution de l`activite de la lipoproteine lipase dans le tissus adipeux de l`EPI a ete observee, ce qui laisse croire a une diminution de la capture des acides gras des lipoproteines circulantes. La diete HPHG n`a eu aucun effet sur la synthese du glycerol-3-phosphate (G3P) par la glycolyse ou la glyceroneogenese. L`activite de la glycerokinase, c.-a-d. la phosphorylation du glycerol issu de l`hydrolyse du TAG endogene pour former le GP3, n`a pas ete modifiee non plus par la diete HPHG. A l`oppose, les adipocytes des rats HPHG stimules par la norepinephrine ont eu une plus faible reponse lipolytique, meme si le taux lipolytique basal des adipocytes a ete similaire chez les 2 groupes. Ainsi, les resultats donnent a penser que la diminution de l`activite lipolytique stimulee par la norepinephrine joue un role essentiel dans l`augmentation du TAG observee dans le tissu adipeux de l`EPI des animaux HPHG, probablement en perturbant le processus d`activation de la lipolyse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growth trial with Senegalese Sole (Solea senegalensis Kaup, 1858) juveniles fed with diets containing increasing replacement levels of fishmeal by mixtures of plant protein sources was conducted over 12 weeks. Total fat contents of muscle, liver, viscera, skin, fins and head tissues were determined, as well as fatty acid profiles of muscle and liver (GC-FID analysis). Liver was the preferential local for fat deposition (5.5–10.8% of fat) followed by fins (3.4–6.7% fat). Increasing levels of plant protein in the diets seems to be related to increased levels of total lipids in the liver. Sole muscle is lean (2.4–4.0% fat), with total lipids being similar among treatments. Liver fatty acid profile varied significantly among treatments. Plant protein diets induced increased levels of C16:1 and C18:2 n -6 and a decrease in ARA and EPA levels. Muscle fatty acid profile also evidenced increasing levels of C18:2 n 6, while ARA and DHA remained similar among treatments. Substitution of fishmeal by plant protein is hence possible without major differences on the lipid content and fatty acid profile of the main edible portion of the fish – the muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L119GF --> AAA mutation affects the mode of RDM1 binding to single-stranded DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. OBJECTIVE: To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. METHODS AND RESULTS: Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. CONCLUSIONS: Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Alterations in lipid metabolism occur when animals are exposed to different feeding systems. In the last few decades, the characterisation of genes involved in fat metabolism and technological advances have enabled the study of the effect of diet on the milk fatty acid (FA) profile in the mammary gland and aided in the elucidation of the mechanisms of the response to diet. The aim of this study was to evaluate the effect of different forage diets (grazing vs. hay) near the time of ewe parturition on the relationship between the fatty acid profile and gene expression in the mammary gland of the Churra Tensina sheep breed. Results: In this study, the forage type affected the C18:2 cis-9 trans-11 (CLA) and long-chain saturated fatty acid (LCFA) content, with higher percentages during grazing than during hay feeding. This may suggest that these FAs act as regulatory factors for the transcriptional control of the carnitine palmitoyltransferase 1B (CPT1B) gene, which was more highly expressed in the grazing group (GRE). The most highly expressed gene in the mammary gland at the fifth week of lactation is CAAT/ enhancer- binding protein beta (CEBPB), possibly due to its role in milk fat synthesis in the mammary gland. More stable housekeeping genes in the ovine mammary gland that would be appropriate for use in gene expression studies were ribosomal protein L19 (RPL19) and glyceraldehyde- 3- phosphate dehydrogenase (GAPDH). Conclusions: Small changes in diet, such as the forage preservation (grazing vs. hay), can affect the milk fatty acid profile and the expression of the CPT1B gene, which is associated with the oxidation of fatty acids. When compared to hay fed indoors, grazing fresh low mountain pastures stimulates the milk content of CLA and LCFA via mammary uptake. In this sense, LCFA in milk may be acting as a regulatory factor for transcriptional control of the CPT1B gene, which was more highly expressed in the grazing group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. J. Cell. Physiol. 231: 708-718, 2016. © 2015 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arabidopsis NPRI protein regulates systemic acquired resistance dependent on salicylic acid. Analyses by plant two-hybrid analysis in vivo and pull-down assays in vitro showed that the BTB/POZ domain of NPRI at the N-terminus serves as an autoinhibitory domain to negate the function of the transactivation domain at the C-terminus through direct binding of these two domains. I t was also shown that the binding of the BTB/POZ domain to the C-terminus of NPRI was abolished by SA treatment, suggesting that SA could interfere directly with this binding. By gel filtration, it was demonstrated that SA affects the conformation of full-length NPRl , confirming the role of NPRI as an SA receptor. Gel filtration analysis also indicated that NPRI could be converted from an oligomer to a dimer with SA treatment. Furthermore, one N-terminal deletion ~513 has been shown to act as a metal-binding protein and its two Cys-521 and Cys-529 are important for binding to Ni 2 + by pull-down assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [ nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.