899 resultados para fast decryption
Resumo:
The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.
Resumo:
Background and Purpose: - This paper focuses on the learning culture within the high performance levels of rowing. In doing so, we explore the case of an individual’s learning as he moves across athletic, coaching and administrative functions. This exploration draws on a cultural learning framework and complementary theorisings related to reflexivity. Method - This study makes use of an intellectually, morally and collaboratively challenging approach whereby one member of the research team was also the sole participant of this study. The participant’s careers as a high performance athlete, coach and administrator, coupled with his experience in conducting empirical research presented a rare opportunity to engage in collaborative research (involving degrees of insider and outsider status for each of the research team). We acknowledge that others have looked to combine roles of coach / athlete / administrator with that of researcher however few (if any) have attempted to combine them all in one project. Moreover, coupled with the approach to reflexivity adopted in this study and the authorship contributions we consider this scholarly direction uncommon. Data were comprised of recorded research conversations, a subsequently constructed learning narrative, reflections on the narrative, a stimulated reflective piece from the participant, and a final (re)construction of the participant’s story. Accordingly, data were integrated through an iterative process of thematic analysis. Results - The cultural (i.e., the ways things get done) and structural (e.g., the rules and regulations) properties of high performance rowing were found to shape both the opportunities to be present (e.g., secure a place in the crew) and to learn (e.g., learn the skills required to perform at an Olympic level). However, the individual’s personal properties were brought to bear on re-shaping the constraints such that many limitations could be overcome. In keeping with the theory of learning cultures, the culture of rowing was found to position individuals (a coxswain in this case) differentially. In a similar manner, a range of structural features was found to be important in shaping the cultural and personal elements in performance contexts. For example, the ‘field of play’ was found to be important as a structural feature (i.e., inability of coach to communicate with athletes) in shaping the cultural and personal elements of learning in competition (e.g., positioning the coxswain as an in-boat coach and trusted crewmate). Finally, the cultural and structural elements in rowing appeared to be activated by the participant’s personal elements, most notably his orientation towards quality performance. Conclusion - The participant in this study was found to be driven by the project that he cares about most and at each turn he has bent his understanding of his sport back on itself to see if he can find opportunities to learn and subsequently explore ways to improve performance. The story here emphasises the importance of learner agency, and this is an aspect that has often been missing in recent theorising about learning. In this study, we find an agent using his ‘personal emergent powers to activate the resources in the culture and structure of his sport in an attempt to improve performance. We conclude from this account that this particular high performance rowing culture is one that provided support but nonetheless encouraged those involved, to ‘figure things out’ for themselves – be it as athletes, coaches and/or administrators.
Resumo:
In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick’s law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n2)O(n2) and computational cost of O(n3)O(n3) down to n and O(nlogn)O(nlogn), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.
Resumo:
Business processes are prone to continuous and unexpected changes. Process workers may start executing a process differently in order to adjust to changes in workload, season, guidelines or regulations for example. Early detection of business process changes based on their event logs – also known as business process drift detection – enables analysts to identify and act upon changes that may otherwise affect process performance. Previous methods for business process drift detection are based on an exploration of a potentially large feature space and in some cases they require users to manually identify the specific features that characterize the drift. Depending on the explored feature set, these methods may miss certain types of changes. This paper proposes a fully automated and statistically grounded method for detecting process drift. The core idea is to perform statistical tests over the distributions of runs observed in two consecutive time windows. By adaptively sizing the window, the method strikes a trade-off between classification accuracy and drift detection delay. A validation on synthetic and real-life logs shows that the method accurately detects typical change patterns and scales up to the extent it is applicable for online drift detection.
Resumo:
Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.
Resumo:
Recent advances in diffusion-weighted MRI (DWI) have enabled studies of complex white matter tissue architecture in vivo. To date, the underlying influence of genetic and environmental factors in determining central nervous system connectivity has not been widely studied. In this work, we introduce new scalar connectivity measures based on a computationally-efficient fast-marching algorithm for quantitative tractography. We then calculate connectivity maps for a DTI dataset from 92 healthy adult twins and decompose the genetic and environmental contributions to the variance in these metrics using structural equation models. By combining these techniques, we generate the first maps to directly examine genetic and environmental contributions to brain connectivity in humans. Our approach is capable of extracting statistically significant measures of genetic and environmental contributions to neural connectivity.
Resumo:
This week there has been discussions between leaders from the Pacific Rim over the Trans-Pacific Partnership in Bali, Indonesia at APEC...
Resumo:
High conductive graphene films can be grown on metal foils by chemical vapor deposition (CVD). We here analyzed the use of ethanol, an economic precursor, which results also safer than commonly-used methane. A comprehensive range of process parameters were explored in order to obtain graphene films with optimal characteristics in view of their use in optoelectronics and photovoltaics. Commercially-available and electro-polished copper foils were used as substrates. By finely tuning the CVD conditions, we obtained few-layer (2-4) graphene films with good conductivity (-500 Ohm/sq) and optical transmittance around 92-94% at 550 nm on unpolished copper foils. The growth on electro-polished copper provides instead predominantly mono-layer films with lower conductivity (>1000 Ohm/sq) and with a transmittance of 97.4% at 550 nm. As for the device properties, graphene with optimal properties as transparent conductive film were produced by CVD on standard copper with specific process conditions.
Resumo:
Detailed molecular dynamics simulations of Lennard-Jones ellipsoids have been carried out to investigate the emergence of criticality in the single-particle orientational relaxation near the isotropic-nematic (IN) phase transition. The simulations show a sudden appearance of a power-law behavior in the decay of the second-rank orientational relaxation as the IN transition is approached. The simulated value of the power-law exponent is 0.56, which is larger than the mean-field value (0.5) but less than the observed value (0.63) and may be due to the finite size of the simulated system. The decay of the first-rank orientational time correlation function, on the other hand, is nearly exponential but its decay becomes very slow near the isotropic-nematic transition, The zero-frequency rotational friction, calculated from the simulated angular Velocity correlation function, shows a marked increase near the IN transition.
Resumo:
Temperature-dependent Raman spectroscopic studies were carried out on Na2Cd(SO4)(2) from room temperature to 600 degrees C. We observe two transitions at around 280 and 565 degrees C. These transitions are driven by the change in the SO4 ion. On the basis of these studies, one can explain the changes in the conductivity data observed around 280 and 565 degrees C. At 280 degrees C, spontaneous tilting of the SO4 ion leads to restriction of Na+ mobility. Above 565 degrees C, the SO4 ion starts to rotate freely, leading to increased mobility of Na+ ion in the channel.