980 resultados para expert system shells
Resumo:
La present tesi pretén recollir l'experiència viscuda en desenvolupar un sistema supervisor intel·ligent per a la millora de la gestió de plantes depuradores d'aigües residuals., implementar-lo en planta real (EDAR Granollers) i avaluar-ne el funcionament dia a dia amb situacions típiques de la planta. Aquest sistema supervisor combina i integra eines de control clàssic de les plantes depuradores (controlador automàtic del nivell d'oxigen dissolt al reactor biològic, ús de models descriptius del procés...) amb l'aplicació d'eines del camp de la intel·ligència artificial (sistemes basats en el coneixement, concretament sistemes experts i sistemes basats en casos, i xarxes neuronals). Aquest document s'estructura en 9 capítols diferents. Hi ha una primera part introductòria on es fa una revisió de l'estat actual del control de les EDARs i s'explica el perquè de la complexitat de la gestió d'aquests processos (capítol 1). Aquest capítol introductori juntament amb el capítol 2, on es pretén explicar els antecedents d'aquesta tesi, serveixen per establir els objectius d'aquest treball (capítol 3). A continuació, el capítol 4 descriu les peculiaritats i especificitats de la planta que s'ha escollit per implementar el sistema supervisor. Els capítols 5 i 6 del present document exposen el treball fet per a desenvolupar el sistema basat en regles o sistema expert (capítol 6) i el sistema basat en casos (capítol 7). El capítol 8 descriu la integració d'aquestes dues eines de raonament en una arquitectura multi nivell distribuïda. Finalment, hi ha una darrer capítol que correspon a la avaluació (verificació i validació), en primer lloc, de cadascuna de les eines per separat i, posteriorment, del sistema global en front de situacions reals que es donin a la depuradora
Resumo:
This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a method of identifying morphological attributes that classify wear particles in relation to the wear process from which they originate and permit the automatic identification without human expertise. The method is based on the use of Multi Layer Perceptron (MLP) for analysis of specific types of microscopic wear particles. The classification of the wear particles was performed according to their morphological attributes of size and aspect ratio, among others. (C) 2010 Journal of Mechanical Engineering. All rights reserved.
Resumo:
This article presents a multi-agent expert system (SMAF) , that allows the input of incidents which occur in different elements of the telecommunications area. SMAF interacts with experts and general users, and each agent with all the agents? community, recording the incidents and their solutions in a knowledge base, without the analysis of their causes. The incidents are expressed using keywords taken from natural language (originally Spanish) and their main concepts are recorded with their severities as the users express them. Then, there is a search of the best solution for each incident, being helped by a human operator using a distancenotions between them.
Resumo:
Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types.
Resumo:
This work deals with quality level prediction in concrete structures through the helpful assistance of an expert system wich is able to apply reasoning to this field of structural engineering. Evidences, hypotheses and factors related to this human knowledge field have been codified into a Knowledge Base in terms of probabilities for the presence of either hypotheses or evidences,and conditional presence of both. Human experts in structural engineering and safety of structures gave their invaluable knowledge and assistance necessary when constructing the "computer knowledge body".
Resumo:
This paper analyzes the relationship between the techniques used to build expert systems and the behaviors they exhibit to show that there is not sufficient evidence to link the behavioral shortcomings of first-generation expert systems to the shallow methods of representation and inference they employ. There is only evidence that the shortcomings are a consequence of a general lack of knowledge. Moreover, the paper shows that the first-generation of expert systems employ both shallow methods and most of the so-called deep methods. Lastly, we show that deeper methods augment but do not replace shallow reasoning methods; most expert systems should possess both."
Resumo:
Owing to the high degree of vulnerability of liquid retaining structures to corrosion problems, there are stringent requirements in its design against cracking. In this paper, a prototype knowledge-based system is developed and implemented for the design of liquid retaining structures based on the blackboard architecture. A commercially available expert system shell VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC programming environment is employed. Hybrid knowledge representation approach with production rules and procedural methods under object-oriented programming are used to represent the engineering heuristics and design knowledge of this domain. It is demonstrated that the blackboard architecture is capable of integrating different knowledge together in an effective manner. The system is tailored to give advice to users regarding preliminary design, loading specification and optimized configuration selection of this type of structure. An example of application is given to illustrate the capabilities of the prototype system in transferring knowledge on liquid retaining structure to novice engineers. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The survival of organisations, especially SMEs, depends, to the greatest extent, on those who supply them with the required material input. This is because if the supplier fails to deliver the right materials at the right time and place, and at the right price, then the recipient organisation is bound to fail in its obligations to satisfy the needs of its customers, and to stay in business. Hence, the task of choosing a supplier(s) from a list of vendors, that an organisation will trust with its very existence, is not an easy one. This project investigated how purchasing personnel in organisations solve the problem of vendor selection. The investigation went further to ascertain whether an Expert Systems model could be developed and used as a plausible solution to the problem. An extensive literature review indicated that very scanty research has been conducted in the area of Expert Systems for Vendor Selection, whereas many research theories in expert systems and in purchasing and supply management chain, respectively, had been reported. A survey questionnaire was designed and circulated to people in the industries who actually perform the vendor selection tasks. Analysis of the collected data confirmed the various factors which are considered during the selection process, and established the order in which those factors are ranked. Five of the factors, namely, Production Methods Used, Vendors Financial Background, Manufacturing Capacity, Size of Vendor Organisations, and Suppliers Position in the Industry; appeared to have similar patterns in the way organisations ranked them. These patterns suggested that the bigger the organisation, the more importantly they regarded the above factors. Further investigations revealed that respondents agreed that the most important factors were: Product Quality, Product Price and Delivery Date. The most apparent pattern was observed for the Vendors Financial Background. This generated curiosity which led to the design and development of a prototype expert system for assessing the financial profile of a potential supplier(s). This prototype was called ESfNS. It determines whether a prospective supplier(s) has good financial background or not. ESNS was tested by the potential users who then confirmed that expert systems have great prospects and commercial viability in the domain for solving vendor selection problems.
Resumo:
The initial aim of this research was to investigate the application of expert Systems, or Knowledge Base Systems technology to the automated synthesis of Hazard and Operability Studies. Due to the generic nature of Fault Analysis problems and the way in which Knowledge Base Systems work, this goal has evolved into a consideration of automated support for Fault Analysis in general, covering HAZOP, Fault Tree Analysis, FMEA and Fault Diagnosis in the Process Industries. This thesis described a proposed architecture for such an Expert System. The purpose of the System is to produce a descriptive model of faults and fault propagation from a description of the physical structure of the plant. From these descriptive models, the desired Fault Analysis may be produced. The way in which this is done reflects the complexity of the problem which, in principle, encompasses the whole of the discipline of Process Engineering. An attempt is made to incorporate the perceived method that an expert uses to solve the problem; keywords, heuristics and guidelines from techniques such as HAZOP and Fault Tree Synthesis are used. In a truly Expert System, the performance of the system is strongly dependent on the high quality of the knowledge that is incorporated. This expert knowledge takes the form of heuristics or rules of thumb which are used in problem solving. This research has shown that, for the application of fault analysis heuristics, it is necessary to have a representation of the details of fault propagation within a process. This helps to ensure the robustness of the system - a gradual rather than abrupt degradation at the boundaries of the domain knowledge.
Resumo:
The research described in this thesis investigates three issues related to the use of expert systems for decision making in organizations. These are the effectiveness of ESs when used in different roles, to replace a human decision maker or to advise a human decision maker, the users' behaviourand opinions towards using an expertadvisory system and, the possibility of organization-wide deployment of expert systems and the role of an ES in different organizational levels. The research was based on the development of expert systems within a business game environment, a simulation of a manufacturing company. This was chosen to give more control over the `experiments' than would be possible in a real organization. An expert system (EXGAME) was developed based on a structure derived from Anthony's three levels of decision making to manage the simulated company in the business game itself with little user intervention. On the basis of EXGAME, an expert advisory system (ADGAME) was built to help game players to make better decisions in managing the game company. EXGAME and ADGAME are thus two expert systems in the same domain performing different roles; it was found that ADGAME had, in places, to be different from EXGAME, not simply an extension of it. EXGAME was tested several times against human rivals and was evaluated by measuring its performance. ADGAME was also tested by different users and was assessed by measuring the users' performance and analysing their opinions towards it as a helpful decision making aid. The results showed that an expert system was able to replace a human at the operational level, but had difficulty at the strategic level. It also showed the success of the organization-wide deployment of expert systems in this simulated company.
Resumo:
Computer integrated manufacture has brought about great advances in manufacturing technology and its recognition is world wide. Cold roll forming of thin-walled sections, and in particular the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is but one such area where computer integrated manufacture can make a positive contribution. The work reported in this thesis, concerned with the development of an integrated manufacturing system for assisting the design and manufacture of form-rolls, was undertaken in collaboration with a leading manufacturer of thin-walled sections. A suit of computer programs, written in FORTRAN 77, have been developed to provide computer aids for every aspect of work in form-roll design and manufacture including cost estimation and stock control aids. The first phase of the development programme dealt with the establishment of CAD facilities for form-roll design, comprising the design of the finished section, the flower pattern, the roll design and the interactive roll editor program. Concerning the CAM facilities, dealt with in the second phase, an expert system roll machining processor and a general post-processor have been developed for considering the roll geometry and automatically generating NC tape programs for any required CNC lathe system. These programs have been successfully implemented, as an integrated manufacturing software system, on the VAX 11/750 super-minicomputer with graphics facilities for displaying drawings interactively on the terminal screen. The development of the integrated system has been found beneficial in all aspects of form-roll design and manufacture. Design and manufacturing lead times have been reduced by several weeks, quality has improved considerably and productivity has increased. The work has also demonstrated the promising nature of the expert systems approach to computer integrated manufacture.
Resumo:
Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.
Resumo:
The thesis presents an account of an attempt to utilize expert systems within the domain of production planning and control. The use of expert systems was proposed due to the problematical nature of a particular function within British Steel Strip Products' Operations Department: the function of Order Allocation, allocating customer orders to a production week and site. Approaches to tackling problems within production planning and control are reviewed, as are the general capabilities of expert systems. The conclusions drawn are that the domain of production planning and control contains both `soft' and `hard' problems, and that while expert systems appear to be a useful technology for this domain, this usefulness has by no means yet been demonstrated. Also, it is argued that the main stream methodology for developing expert systems is unsuited for the domain. A problem-driven approach is developed and used to tackle the Order Allocation function. The resulting system, UAAMS, contained two expert components. One of these, the scheduling procedure was not fully implemented due to inadequate software. The second expert component, the product routing procedure, was untroubled by such difficulties, though it was unusable on its own; thus a second system was developed. This system, MICRO-X10, duplicated the function of X10, a complex database query routine used daily by Order Allocation. A prototype version of MICRO-X10 proved too slow to be useful but allowed implementation and maintenance issues to be analysed. In conclusion, the usefulness of the problem-driven approach to expert systems development within production planning and control is demonstrated but restrictions imposed by current expert system software are highlighted in that the abilities of such software to cope with `hard' scheduling constructs and also the slow processing speeds of such software can restrict the current usefulness of expert systems within production planning and control.
Resumo:
Design of casting entails the knowledge of various interacting factors that are unique to casting process, and, quite often, product designers do not have the required foundry-specific knowledge. Casting designers normally have to liaise with casting experts in order to ensure the product designed is castable and the optimum casting method is selected. This two-way communication results in long design lead times, and lack of it can easily lead to incorrect casting design. A computer-based system at the discretion of a design engineer can, however, alleviate this problem and enhance the prospect of casting design for manufacture. This paper proposes a knowledge-based expert system approach to assist casting product designers in selecting the most suitable casting process for specified casting design requirements, during the design phase of product manufacture. A prototype expert system has been developed, based on production rules knowledge representation technique. The proposed system consists of a number of autonomous but interconnected levels, each dealing with a specific group of factors, namely, casting alloy, shape and complexity parameters, accuracy requirements and comparative costs, based on production quantity. The user interface has been so designed to allow the user to have a clear view of how casting design parameters affect the selection of various casting processes at each level; if necessary, the appropriate design changes can be made to facilitate the castability of the product being designed, or to suit the design to a preferred casting method.