994 resultados para expert design
Resumo:
When constructing and using environmental models, it is typical that many of the inputs to the models will not be known perfectly. In some cases, it will be possible to make observations, or occasionally physics-based uncertainty propagation, to ascertain the uncertainty on these inputs. However, such observations are often either not available or even possible, and another approach to characterising the uncertainty on the inputs must be sought. Even when observations are available, if the analysis is being carried out within a Bayesian framework then prior distributions will have to be specified. One option for gathering or at least estimating this information is to employ expert elicitation. Expert elicitation is well studied within statistics and psychology and involves the assessment of the beliefs of a group of experts about an uncertain quantity, (for example an input / parameter within a model), typically in terms of obtaining a probability distribution. One of the challenges in expert elicitation is to minimise the biases that might enter into the judgements made by the individual experts, and then to come to a consensus decision within the group of experts. Effort is made in the elicitation exercise to prevent biases clouding the judgements through well-devised questioning schemes. It is also important that, when reaching a consensus, the experts are exposed to the knowledge of the others in the group. Within the FP7 UncertWeb project (http://www.uncertweb.org/), there is a requirement to build a Webbased tool for expert elicitation. In this paper, we discuss some of the issues of building a Web-based elicitation system - both the technological aspects and the statistical and scientific issues. In particular, we demonstrate two tools: a Web-based system for the elicitation of continuous random variables and a system designed to elicit uncertainty about categorical random variables in the setting of landcover classification uncertainty. The first of these examples is a generic tool developed to elicit uncertainty about univariate continuous random variables. It is designed to be used within an application context and extends the existing SHELF method, adding a web interface and access to metadata. The tool is developed so that it can be readily integrated with environmental models exposed as web services. The second example was developed for the TREES-3 initiative which monitors tropical landcover change through ground-truthing at confluence points. It allows experts to validate the accuracy of automated landcover classifications using site-specific imagery and local knowledge. Experts may provide uncertainty information at various levels: from a general rating of their confidence in a site validation to a numerical ranking of the possible landcover types within a segment. A key challenge in the web based setting is the design of the user interface and the method of interacting between the problem owner and the problem experts. We show the workflow of the elicitation tool, and show how we can represent the final elicited distributions and confusion matrices using UncertML, ready for integration into uncertainty enabled workflows.We also show how the metadata associated with the elicitation exercise is captured and can be referenced from the elicited result, providing crucial lineage information and thus traceability in the decision making process.
Resumo:
Hazard and operability (HAZOP) studies on chemical process plants are very time consuming, and often tedious, tasks. The requirement for HAZOP studies is that a team of experts systematically analyse every conceivable process deviation, identifying possible causes and any hazards that may result. The systematic nature of the task, and the fact that some team members may be unoccupied for much of the time, can lead to tedium, which in turn may lead to serious errors or omissions. An aid to HAZOP are fault trees, which present the system failure logic graphically such that the study team can readily assimilate their findings. Fault trees are also useful to the identification of design weaknesses, and may additionally be used to estimate the likelihood of hazardous events occurring. The one drawback of fault trees is that they are difficult to generate by hand. This is because of the sheer size and complexity of modern process plants. The work in this thesis proposed a computer-based method to aid the development of fault trees for chemical process plants. The aim is to produce concise, structured fault trees that are easy for analysts to understand. Standard plant input-output equation models for major process units are modified such that they include ancillary units and pipework. This results in a reduction in the nodes required to represent a plant. Control loops and protective systems are modelled as operators which act on process variables. This modelling maintains the functionality of loops, making fault tree generation easier and improving the structure of the fault trees produced. A method, called event ordering, is proposed which allows the magnitude of deviations of controlled or measured variables to be defined in terms of the control loops and protective systems with which they are associated.
Resumo:
This research project focused upon the design strategies adopted by expert and novice designers. It was based upon a desire to compare the design problem solving strategies of novices, in this case key stage three pupils studying technolgy within the United Kingdom National Curriculum, with designers who could be considered to have developed expertise. The findings helped to provide insights into potential teaching strategies to suit novice designers. Verbal protocols were made as samples of expert and novice designers solved a design problem and talked aloud as they worked. The verbalisations were recorded on video tape. The protocols were transcribed and segmented, with each segment being assigned to a predetermined coding system which represented a model of design problem solving. The results of the encoding were analysed and consideration was also given to the general design strategy and heuristics used by the expert and novice designers. The drawings and models produced during the generation of the protocols were also analysed and considered. A number of significant differences between the problem solving strategies adopted by the expert and novice designers were identified. First of all, differences were observed in the way expert and novice designers used the problem statement and solution validation during the process. Differences were also identified in the way holistic solutions were generated near the start of the process, and also in the cycles of exploration and the processes of integration. The way design and technological knowledge was used provided further insights into the differences between experts and novices, as did the role of drawing and modelling during the process. In more general terms, differences were identified in the heuristics and overall design strategies adopted by the expert and novice designers. The above findings provided a basis for discussing teaching strategies appropriate for novice designers. Finally, opportunities for future research were discussed.
Resumo:
Changes in modern structural design have created a demand for products which are light but possess high strength. The objective is a reduction in fuel consumption and weight of materials to satisfy both economic and environmental criteria. Cold roll forming has the potential to fulfil this requirement. The bending process is controlled by the shape of the profile machined on the periphery of the rolls. A CNC lathe can machine complicated profiles to a high standard of precision, but the expertise of a numerical control programmer is required. A computer program was developed during this project, using the expert system concept, to calculate tool paths and consequently to expedite the procurement of the machine control tapes whilst removing the need for a skilled programmer. Codifying the expertise of a human and the encapsulation of knowledge within a computer memory, destroys the dependency on highly trained people whose services can be costly, inconsistent and unreliable. A successful cold roll forming operation, where the product is geometrically correct and free from visual defects, is not easy to attain. The geometry of the sheet after travelling through the rolling mill depends on the residual strains generated by the elastic-plastic deformation. Accurate evaluation of the residual strains can provide the basis for predicting the geometry of the section. A study of geometric and material non-linearity, yield criteria, material hardening and stress-strain relationships was undertaken in this research project. The finite element method was chosen to provide a mathematical model of the bending process and, to ensure an efficient manipulation of the large stiffness matrices, the frontal solution was applied. A series of experimental investigations provided data to compare with corresponding values obtained from the theoretical modelling. A computer simulation, capable of predicting that a design will be satisfactory prior to the manufacture of the rolls, would allow effort to be concentrated into devising an optimum design where costs are minimised.
Resumo:
Classification of metamorphic rocks is normally carried out using a poorly defined, subjective classification scheme making this an area in which many undergraduate geologists experience difficulties. An expert system to assist in such classification is presented which is capable of classifying rocks and also giving further details about a particular rock type. A mixed knowledge representation is used with frame, semantic and production rule systems available. Classification in the domain requires that different facets of a rock be classified. To implement this, rocks are represented by 'context' frames with slots representing each facet. Slots are satisfied by calling a pre-defined ruleset to carry out the necessary inference. The inference is handled by an interpreter which uses a dependency graph representation for the propagation of evidence. Uncertainty is handled by the system using a combination of the MYCIN certainty factor system and the Dempster-Shafer range mechanism. This allows for positive and negative reasoning, with rules capable of representing necessity and sufficiency of evidence, whilst also allowing the implementation of an alpha-beta pruning algorithm to guide question selection during inference. The system also utilizes a semantic net type structure to allow the expert to encode simple relationships between terms enabling rules to be written with a sensible level of abstraction. Using frames to represent rock types where subclassification is possible allows the knowledge base to be built in a modular fashion with subclassification frames only defined once the higher level of classification is functioning. Rulesets can similarly be added in modular fashion with the individual rules being essentially declarative allowing for simple updating and maintenance. The knowledge base so far developed for metamorphic classification serves to demonstrate the performance of the interpreter design whilst also moving some way towards providing a useful assistant to the non-expert metamorphic petrologist. The system demonstrates the possibilities for a fully developed knowledge base to handle the classification of igneous, sedimentary and metamorphic rocks. The current knowledge base and interpreter have been evaluated by potential users and experts. The results of the evaluation show that the system performs to an acceptable level and should be of use as a tool for both undergraduates and researchers from outside the metamorphic petrography field. .
Resumo:
The present scarcity of operational knowledge-based systems (KBS) has been attributed, in part, to an inadequate consideration shown to user interface design during development. From a human factors perspective the problem has stemmed from an overall lack of user-centred design principles. Consequently the integration of human factors principles and techniques is seen as a necessary and important precursor to ensuring the implementation of KBS which are useful to, and usable by, the end-users for whom they are intended. Focussing upon KBS work taking place within commercial and industrial environments, this research set out to assess both the extent to which human factors support was presently being utilised within development, and the future path for human factors integration. The assessment consisted of interviews conducted with a number of commercial and industrial organisations involved in KBS development; and a set of three detailed case studies of individual KBS projects. Two of the studies were carried out within a collaborative Alvey project, involving the Interdisciplinary Higher Degrees Scheme (IHD) at the University of Aston in Birmingham, BIS Applied Systems Ltd (BIS), and the British Steel Corporation. This project, which had provided the initial basis and funding for the research, was concerned with the application of KBS to the design of commercial data processing (DP) systems. The third study stemmed from involvement on a KBS project being carried out by the Technology Division of the Trustees Saving Bank Group plc. The preliminary research highlighted poor human factors integration. In particular, there was a lack of early consideration of end-user requirements definition and user-centred evaluation. Instead concentration was given to the construction of the knowledge base and prototype evaluation with the expert(s). In response to this identified problem, a set of methods was developed that was aimed at encouraging developers to consider user interface requirements early on in a project. These methods were then applied in the two further projects, and their uptake within the overall development process was monitored. Experience from the two studies demonstrated that early consideration of user interface requirements was both feasible, and instructive for guiding future development work. In particular, it was shown a user interface prototype could be used as a basis for capturing requirements at the functional (task) level, and at the interface dialogue level. Extrapolating from this experience, a KBS life-cycle model is proposed which incorporates user interface design (and within that, user evaluation) as a largely parallel, rather than subsequent, activity to knowledge base construction. Further to this, there is a discussion of several key elements which can be seen as inhibiting the integration of human factors within KBS development. These elements stem from characteristics of present KBS development practice; from constraints within the commercial and industrial development environments; and from the state of existing human factors support.
Resumo:
This paper explores the use of the optimization procedures in SAS/OR software with application to the contemporary logistics distribution network design using an integrated multiple criteria decision making approach. Unlike the traditional optimization techniques, the proposed approach, combining analytic hierarchy process (AHP) and goal programming (GP), considers both quantitative and qualitative factors. In the integrated approach, AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, a GP model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. To facilitate the use of integrated multiple criteria decision making approach by SAS users, an ORMCDM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear programming models based on the selected GP model. An example is given to illustrate how one could use the code to design the logistics distribution network.
Resumo:
Design and Designing provides a broad and critical understanding of what is essentially a practical subject. Designing today is less a craft and more a part of the knowledge economy. It's all about knowing how to acquire knowledge and how to apply it creatively. Design and Designing covers the design process, modelling and drawing, working with clients, production and consumption, sustainability, professional practice and design futures. Chapters are written by expert teachers and practitioners from around the globe, each presenting an accessible and engaging overview of their field of design. Every chapter is highly illustrated with a combination of images and information boxes, which extend or highlight key material. Each section concludes with a design project, a hands-on activity for the reader. Design and Designing covers the full spectrum of design types, from graphic communication to product design, from fashion to games design, setting every type in its aesthetic, ethical and social contexts. With this essential book, readers will learn from today's best practice and best thinking in design, they will develop a critical sense, and become the designers of tomorrow.
Resumo:
This paper discusses demand and supply chain management and examines how artificial intelligence techniques and RFID technology can enhance the responsiveness of the logistics workflow. This proposed system is expected to have a significant impact on the performance of logistics networks by virtue of its capabilities to adapt unexpected supply and demand changes in the volatile marketplace with the unique feature of responsiveness with the advanced technology, Radio Frequency Identification (RFID). Recent studies have found that RFID and artificial intelligence techniques drive the development of total solution in logistics industry. Apart from tracking the movement of the goods, RFID is able to play an important role to reflect the inventory level of various distribution areas. In today’s globalized industrial environment, the physical logistics operations and the associated flow of information are the essential elements for companies to realize an efficient logistics workflow scenario. Basically, a flexible logistics workflow, which is characterized by its fast responsiveness in dealing with customer requirements through the integration of various value chain activities, is fundamental to leverage business performance of enterprises. The significance of this research is the demonstration of the synergy of using a combination of advanced technologies to form an integrated system that helps achieve lean and agile logistics workflow.
Resumo:
Optimization of design, creation, functioning and accompaniment processes of expert system is the important problem of artificial intelligence theory and decisions making methods techniques. In this paper the approach to its solving with the use of technology, being based on methodology of systems analysis, ontology of subject domain, principles and methods of self-organisation, is offered. The aspects of such approach realization, being based on construction of accordance between the ontology hierarchical structure and sequence of questions in automated systems for examination, are expounded.
Resumo:
An expert system (ES) is a class of computer programs developed by researchers in artificial intelligence. In essence, they are programs made up of a set of rules that analyze information about a specific class of problems, as well as provide analysis of the problems, and, depending upon their design, recommend a course of user action in order to implement corrections. ES are computerized tools designed to enhance the quality and availability of knowledge required by decision makers in a wide range of industries. Decision-making is important for the financial institutions involved due to the high level of risk associated with wrong decisions. The process of making decision is complex and unstructured. The existing models for decision-making do not capture the learned knowledge well enough. In this study, we analyze the beneficial aspects of using ES for decision- making process.
Resumo:
Database design is a difficult problem for non-expert designers. It is desirable to assist such designers during the problem solving process by means of a knowledge based (KB) system. A number of prototype KB systems have been proposed, however there are many shortcomings. Few have incorporated sufficient expertise in modeling relationships, particularly higher order relationships. There has been no empirical study that experimentally tested the effectiveness of any of these KB tools. Problem solving behavior of non-experts, whom the systems were intended to assist, has not been one of the bases for system design. In this project a consulting system for conceptual database design that addresses the above short comings was developed and empirically validated.^ The system incorporates (a) findings on why non-experts commit errors and (b) heuristics for modeling relationships. Two approaches to knowledge base implementation--system restrictiveness and decisional guidance--were used and compared in this project. The Restrictive approach is proscriptive and limits the designer's choices at various design phases by forcing him/her to follow a specific design path. The Guidance system approach which is less restrictive, provides context specific, informative and suggestive guidance throughout the design process. The main objectives of the study are to evaluate (1) whether the knowledge-based system is more effective than a system without the knowledge-base and (2) which knowledge implementation--restrictive or guidance--strategy is more effective. To evaluate the effectiveness of the knowledge base itself, the two systems were compared with a system that does not incorporate the expertise (Control).^ The experimental procedure involved the student subjects solving a task without using the system (pre-treatment task) and another task using one of the three systems (experimental task). The experimental task scores of those subjects who performed satisfactorily in the pre-treatment task were analyzed. Results are (1) The knowledge based approach to database design support lead to more accurate solutions than the control system; (2) No significant difference between the two KB approaches; (3) Guidance approach led to best performance; and (4) The subjects perceived the Restrictive system easier to use than the Guidance system. ^
Resumo:
Database design is a difficult problem for non-expert designers. It is desirable to assist such designers during the problem solving process by means of a knowledge based (KB) system. Although a number of prototype KB systems have been proposed, there are many shortcomings. Firstly, few have incorporated sufficient expertise in modeling relationships, particularly higher order relationships. Secondly, there does not seem to be any published empirical study that experimentally tested the effectiveness of any of these KB tools. Thirdly, problem solving behavior of non-experts, whom the systems were intended to assist, has not been one of the bases for system design. In this project, a consulting system, called CODA, for conceptual database design that addresses the above short comings was developed and empirically validated. More specifically, the CODA system incorporates (a) findings on why non-experts commit errors and (b) heuristics for modeling relationships. Two approaches to knowledge base implementation were used and compared in this project, namely system restrictiveness and decisional guidance (Silver 1990). The Restrictive system uses a proscriptive approach and limits the designer's choices at various design phases by forcing him/her to follow a specific design path. The Guidance system approach, which is less restrictive, involves providing context specific, informative and suggestive guidance throughout the design process. Both the approaches would prevent erroneous design decisions. The main objectives of the study are to evaluate (1) whether the knowledge-based system is more effective than the system without a knowledge-base and (2) which approach to knowledge implementation - whether Restrictive or Guidance - is more effective. To evaluate the effectiveness of the knowledge base itself, the systems were compared with a system that does not incorporate the expertise (Control). An experimental procedure using student subjects was used to test the effectiveness of the systems. The subjects solved a task without using the system (pre-treatment task) and another task using one of the three systems, viz. Control, Guidance or Restrictive (experimental task). Analysis of experimental task scores of those subjects who performed satisfactorily in the pre-treatment task revealed that the knowledge based approach to database design support lead to more accurate solutions than the control system. Among the two KB approaches, Guidance approach was found to lead to better performance when compared to the Control system. It was found that the subjects perceived the Restrictive system easier to use than the Guidance system.
Resumo:
This paper presents a web based expert system application that carries out an initial assessment of the feasibility of a web project. The system allows detection of inconsistency problems before design starts, and suggests correcting actions to solve them. The developed system presents important advantages not only for determining the feasibility of a web project but also by acting as a means of communication between the client company and the web development team, making the requirements specification clearer.
Resumo:
Child marriage is still a great issue in developing countries and even if the interventions to prevent it are having results, they are not enough to eliminate the problem. Among the strategies that seem to work most to fight child marriage, there is the empowerment of girls with information combined with education of parents and community. As smartphones are more accessible year after year in developing countries, this thesis wants to investigate if a mobile app could be effective in fighting child marriage and which characteristics such an app should have. The research was organized in four phases and used design and creation and case study methodologies. Firstly, the literature was analyzed and an initial design was proposed. Secondly, expert interviews were performed to gain feedback on the proposed design, and afterwards prototype was built. Thirdly, a case study in the Democratic Republic of Congo (DRC) was performed to test the prototype, gaining insights and improvements through group interviews with 26 girls aged 15-19. Finally, a first version of the app was developed and a second phase of the case study was run in the DRC to understand if the girls were able to use the app. This phase included 14 girls of which 6 had participated in the prototype testing and used questionnaires as a data generation method. The app was built following the Principles for Digital Development. Even if this app is built based on the case study in DRC is modular and easily adaptable to other contexts as it is not content-specific. It was shown that is worth continuing to study this topic and it was defined a conceptual framework for designing learning apps for developing countries, in particular, to fight child, early, and forced marriage.