940 resultados para experimental visual perception


Relevância:

90.00% 90.00%

Publicador:

Resumo:

An object's motion relative to an observer can confer ethologically meaningful information. Approaching or looming stimuli can signal threats/collisions to be avoided or prey to be confronted, whereas receding stimuli can signal successful escape or failed pursuit. Using movement detection and subjective ratings, we investigated the multisensory integration of looming and receding auditory and visual information by humans. While prior research has demonstrated a perceptual bias for unisensory and more recently multisensory looming stimuli, none has investigated whether there is integration of looming signals between modalities. Our findings reveal selective integration of multisensory looming stimuli. Performance was significantly enhanced for looming stimuli over all other multisensory conditions. Contrasts with static multisensory conditions indicate that only multisensory looming stimuli resulted in facilitation beyond that induced by the sheer presence of auditory-visual stimuli. Controlling for variation in physical energy replicated the advantage for multisensory looming stimuli. Finally, only looming stimuli exhibited a negative linear relationship between enhancement indices for detection speed and for subjective ratings. Maximal detection speed was attained when motion perception was already robust under unisensory conditions. The preferential integration of multisensory looming stimuli highlights that complex ethologically salient stimuli likely require synergistic cooperation between existing principles of multisensory integration. A new conceptualization of the neurophysiologic mechanisms mediating real-world multisensory perceptions and action is therefore supported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Whereas people are typically thought to be better off with more choices, studiesshow that they often prefer to choose from small as opposed to large sets of alternatives.We propose that satisfaction from choice is an inverted U-shaped function of thenumber of alternatives. This proposition is derived theoretically by considering thebenefits and costs of different numbers of alternatives and is supported by fourexperimental studies. We also manipulate the perceptual costs of information processingand demonstrate how this affects the resulting satisfaction function. We furtherindicate that satisfaction when choosing from a given set is diminished if people aremade aware of the existence of other choice sets. The role of individual differences insatisfaction from choice is documented by noting effects due to gender and culture. Weconclude by emphasizing the need to have an explicit rationale for knowing how muchchoice is enough.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To understand the causes of schizophrenia, a search for stable markers (endophenotypes) is ongoing. In previous years, we have shown that the shine-through visual backward masking paradigm meets the most important characteristics of an endophenotype. Here, we tested masking performance differences between healthy students with low and high schizotypy scores as determined by the self-report O-Life questionnaire assessing schizotypy along three dimensions, i.e. positive schizotypy (unusual experiences), cognitive disorganisation, and negative schizotypy (introvertive anhedonia). Forty participants performed the shine-through backward masking task and a classical cognitive test, the Wisconsin Card Sorting Task (WCST). We found that visual backward masking was impaired for students scoring high as compared to low on the cognitive disorganisation dimension, whereas the positive and negative schizotypy dimensions showed no link to masking performance. We also found group differences for students scoring high and low on the cognitive disorganisation factor for the WCST. These findings indicate that the shine-through paradigm is sensitive to differences in schizotypy which are closely linked with the pathological expression in schizophrenia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La actuación de las estructuras de conocimiento en el proceso de identificación y codificación de estimulos visuales se ha operativizado frecuentemente mediante conceptos como contexto o tipicidad. Ambos efectos pueden considerarse complementarios y producidos por la actuación de un mecanisrno de tipo atencional. Dicho mecanisrno fue aplicado al procesamiento de escenas por Arnau, Carreras y Salvador (en prensa). A partir de los términos propuestos en dicho modelo se intenta comprobar si la tipicidad es una variable relevante para la identificación de 10s objetos que forman una escena. Los resultados obtenidos en el experimento 1 permiten afirmar que el grado de tipicidad de un objeto respecto a una escena determina el tiempo y exactitud de su identificación. Por otra parte, en el experimento 2 se demuestra que en procesos de memoria a corto plazo el efecto de tipicidad detectado en el experimento 1 se anula. Finalmente se discuten las implicaciones de estos resultados para el estudio de la percepción visual de escenas naturales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the case study of a French-Spanish bilingual dyslexic girl, MP, who exhibited a severe visual attention (VA) span deficit but preserved phonological skills. Behavioural investigation showed a severe reduction of reading speed for both single items (words and pseudo-words) and texts in the two languages. However, performance was more affected in French than in Spanish. MP was administered an intensive VA span intervention programme. Pre-post intervention comparison revealed a positive effect of intervention on her VA span abilities. The intervention further transferred to reading. It primarily resulted in faster identification of the regular and irregular words in French. The effect of intervention was rather modest in Spanish that only showed a tendency for faster word reading. Text reading improved in the two languages with a stronger effect in French but pseudo-word reading did not improve in either French or Spanish. The overall results suggest that VA span intervention may primarily enhance the fast global reading procedure, with stronger effects in French than in Spanish. MP underwent two fMRI sessions to explore her brain activations before and after VA span training. Prior to the intervention, fMRI assessment showed that the striate and extrastriate visual cortices alone were activated but none of the regions typically involved in VA span. Post-training fMRI revealed increased activation of the superior and inferior parietal cortices. Comparison of pre- and post-training activations revealed significant activation increase of the superior parietal lobes (BA 7) bilaterally. Thus, we show that a specific VA span intervention not only modulates reading performance but further results in increased brain activity within the superior parietal lobes known to housing VA span abilities. Furthermore, positive effects of VA span intervention on reading suggest that the ability to process multiple visual elements simultaneously is one cause of successful reading acquisition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: C57/Bl6, Cpfl1-/- (Cone photoreceptors function loss 1; pure rod function), Gnat1alpha-/- (rod alpha-transducin; pure cone function) and Rpe65-/-;Rho-/- double knock-out mice were studied in order to distinguish the respective contributions of the different photoreceptor (PR) systems that enable light perception and mediate a visual reflex in adult Rpe65-/- mice using a simple behavioural procedure. Methods: Visual function was estimated using a rotating automatized optomotor drum covered with vertical black and white stripes at spatial frequencies of 0.025 to 0.5 cycles per degree (cpd) in both photopic and scotopic conditions. To evaluate the contribution as well as the light intensity threshold of each PR system, we tested the mouse strains with different luminances. Results: Stripe rotation elicits head movements in wild-type (WT) animals in photopic and scotopic conditions depending on the spatial frequency, whereas Cpfl1-/- mice show a reduced activity in the photopic condition and Gnat1alpha-/- mice an almost absent response in the scotopic condition. Interestingly, a robust visual response is obtained with Rpe65-/- knockout mice at 0.075 cpd and 0.1 cpd in the photopic condition. The residual rod function in the Rpe65-/- animals was demonstrated by testing Rpe65-/-;Rho-/- mice that present no response in photopic conditions. Conclusions: The optomotor test is a simple method to estimate the visual function, and to evaluate the respective contributions of rod and cone systems. Using this test, we demonstrate that in Rpe65-/- mice, devoid of functional cones and of detectable 11-cis-retinal protein, rods mimic in part the cone function by mediating vision in photopic conditions.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Participants in an immersive virtual environment interact with the scene from an egocentric point of view that is, where there bodies appear to be located rather than from outside as if looking through a window. People interact through normal body movements, such as head-turning,reaching, and bending, and within the tracking limitations move through the environment or effect changes within it in natural ways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Individuals with vestibular dysfunction may experience visual vertigo (VV), in which symptoms are provoked or exacerbated by excessive or disorientating visual stimuli (e.g. supermarkets). VV can significantly improve when customized vestibular rehabilitation exercises are combined with exposure to optokinetic stimuli. Virtual reality (VR), which immerses patients in realistic, visually challenging environments, has also been suggested as an adjunct to VR to improve VV symptoms. This pilot study compared the responses of sixteen patients with unilateral peripheral vestibular disorder randomly allocated to a VR regime incorporating exposure to a static (Group S) or dynamic (Group D) VR environment. Participants practiced vestibular exercises, twice weekly for four weeks, inside a static (Group S) or dynamic (Group D) virtual crowded square environment, presented in an immersive projection theatre (IPT), and received a vestibular exercise program to practice on days not attending clinic. A third Group D1 completed both the static and dynamic VR training. Treatment response was assessed with the Dynamic Gait Index and questionnaires concerning symptom triggers and psychological state. At final assessment, significant betweengroup differences were noted between Groups D (p = 0.001) and D1 (p = 0.03) compared to Group S for VV symptoms with the former two showing a significant 59.2% and 25.8% improvement respectively compared to 1.6% for the latter. Depression scores improved only for Group S (p = 0.01) while a trend towards significance was noted for Group D regarding anxiety scores (p = 0.07). Conclusion: Exposure to dynamic VR environments should be considered as a useful adjunct to vestibular rehabilitation programs for patients with peripheral vestibular disorders and VV symptoms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper address we the question as to why participants tend to respond realistically to situations and events portrayed within an Immersive Virtual Reality (IVR) system. The idea is put forward, based on experience of a large number of experimental studies, that there are two orthogonal components that contribute to this realistic response. The first is"being there", often called"presence", the qualia of having a sensation of being in a real place. We call this Place Illusion (PI). Second, Plausibility Illusion (Psi) refers to the illusion that the scenario being depicted is actually occurring. In the case of both PI and Psi the participant knows for sure that that they are not"there" and that the events are not occurring. PI is constrained by the sensorimotor contingencies afforded by the virtual reality system. Psi is determined by the extent to which the system can produce events that directly relate to the participant, and the overall credibility of the scenario being depicted in comparison with expectations. We argue that when both PI and Psi occur, participants will respond realistically to the virtual reality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.