969 resultados para excited electronic states


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stationary states of an electron in thin GaAs elliptical quantum rings are calculated within the effective-mass approximation. The width of the ring varies smoothly along the centerline, which is an ellipse. The solutions of the Schrödinger equation with Dirichlet boundary conditions are approximated by a product of longitudinal and transversal wave functions. The ground-state probability density shows peaks: (i) where the curvature is larger in a constant-with ring, and (ii) in thicker parts of a circular ring. For rings of typical dimensions, it is shown that the effects of a varying width may be stronger than those of the varying curvature. Also, a width profile which compensates the main localization effects of the varying curvature is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the capability of the next generation of linear electron-positron colliders to unravel the spin and couplings of excited leptons predicted by composite models. Assuming that these machines will be able to operate both in the e+e- and e-γ modes, we study the effects of the excited electrons of spin 1/2 and 3/2 in the reactions e-γ → e-γ and e+e- → γγ. We show how the use of polarized beams is able not only to increase the reach of these machines, but also to determine the spin and couplings of the excited states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report the construction of potential energy surfaces for the (3)A '' and (3)A' states of the system O(P-3) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O(P-3) + HBr -> OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A '' electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A' surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A '' and 4.16 kcal/mol for the (3)A' state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705428]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin coherence generation in an ensemble of negatively charged (In,Ga)As/GaAs quantum dots was investigated by picosecond time-resolved pump-probe spectroscopy measuring ellipticity. Robust coherence of the ground-state electron spins is generated by pumping excited charged exciton (trion) states. The phase of the coherent state, as evidenced by the spin ensemble precession about an external magnetic field, varies relative to spin coherence generation resonant with the ground state. The phase variation depends on the pump photon energy. It is determined by (a) pumping dominantly either singlet or triplet excited states, leading to a phase inversion, and (b) the subsequent carrier relaxation into the ground states. From the dependence of the precession phase and the measured g factors, information about the quantum dot shell splitting and the exchange energy splitting between triplet and singlet states can be extracted in the ensemble.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-consistency of a thermodynamical theory for hadronic systems based on the non-extensive statistics is investigated. We show that it is possible to obtain a self-consistent theory according to the asymptotic bootstrap principle if the mass spectrum and the energy density increase q-exponentially. A direct consequence is the existence of a limiting effective temperature for the hadronic system. We show that this result is in agreement with experiments. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is one of the most common compounds on earth and is essential for all biological activities. Water has, however, been a mystery for many years due to the large number of unusual chemical and physical properties, e.g. decreased volume during melting and maximum density at 4 °C. The origin of the anomalies behavior is the nature of the hydrogen bond. This thesis will presented an x-ray absorption spectroscopy (XAS) study to reveal the hydrogen bond structure in liquid water. The x-ray absorption process is faster than a femtosecond and thereby reflects the molecular orbital structure in a frozen geometry locally around the probed water molecules. The results indicate that the electronic structure of liquid water is significantly different from that of the solid and gaseous forms. The molecular arrangement in the first coordination shell of liquid water is actually very similar as the two-hydrogen-bonded configurations at the surface of ice. This discovery suggests that most molecules in liquid water have two-hydrogen-bonded configurations with one donor and one acceptor hydrogen bond compared to the four-hydrogen-bonded tetrahedral structure in ice. This result is controversial since the general picture is that the structure of liquid water is very similar to the structure of ice. The results are, however, consistent with x-ray and neutron diffraction data but reveals serious discrepancies with structures based on current molecular dynamics simulations. The two-hydrogen-bond configuration in liquid water is rigid and heating from 25 °C to 90 °C introduce a minor change in the hydrogen-bonded configurations. Furthermore, XAS studies of water in aqueous solutions show that ion hydration does not affect the hydrogen bond configuration of the bulk. Only water molecules in the close vicinity to the ions show changes in the hydrogen bond formation. XAS data obtained with fluorescence yield are sensitive enough to resolved electronic structure of water molecules in the first hydration sphere and to distinguish between different protonated species. Hence, XAS is a useful tool to provide insight into the local electronic structure of a hydrogen-bonded liquid and it is applied for the first time on water revealing unique information of high importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on integral-, momentum transfer-and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (N-open) at either the static-exchange (N-open ch-SE) or the static-exchange-plus-polarisation (N-open ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections. (C) 2016 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented. (C) 2016 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quenching of fluorescence of the free-base tetraphenylporphyrin, H2TPP, and its metal derivatives, MgTPP and ZnTPP by diverse iron(III) complexes, [Fe(CN)6]3−, Fe(acac)3, [Fe(mnt)2]−, Fe(Salen)Cl, [Fe4S4(SPh)4]2−·, FeTPPCl and [Fe(Cp)2]+ has been studied both in homogeneous medium (CH3CN) and micellar media, SDS., CTAB and Triton X-100. The quenching efficiencies are analysed in terms of diffusional encounters and it has been possible to separate static quenching components. The quenching constants are dependent on the nature of the ligating atoms around iron(III) and also on the extent of π-conjugation of the ligands. The quenching mechanism has been investigated using steady-state irradiation experiments. Evidence for oxidative quenching by iron(III) complexes was obtained, though the spin multiplicities of the excited electronic states of iron(III) complexes permit both energy and electron transfer mechanisms for quenching of the singlet excited state of the porphyrins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I. Introductory Remarks

A brief discussion of the overall organization of the thesis is presented along with a discussion of the relationship between this thesis and previous work on the spectroscopic properties of benzene.

II. Radiationless Transitions and Line broadening

Radiationless rates have been calculated for the 3B1u→1A1g transitions of benzene and perdeuterobenzene as well as for the 1B2u→1A1g transition of benzene. The rates were calculated using a model that considers the radiationless transition as a tunneling process between two multi-demensional potential surfaces and assuming both harmonic and anharmonic vibrational potentials. Whenever possible experimental parameters were used in the calculation. To this end we have obtained experimental values for the anharmonicities of the carbon-carbon and carbon-hydrogen vibrations and the size of the lowest triplet state of benzene. The use of the breakdown of the Born-Oppenheimer approximation in describing radiationless transitions is critically examined and it is concluded that Herzberg-Teller vibronic coupling is 100 times more efficient at inducing radiationless transitions.

The results of the radiationless transition rate calculation are used to calculate line broadening in several of the excited electronic states of benzene. The calculated line broadening in all cases is in qualitative agreement with experimental line widths.

III. 3B1u1A1g Absorption Spectra

The 3B1u1A1g absorption spectra of C6H6 and C6D6 at 4.2˚K have been obtained at high resolution using the phosphorescence photoexcitation method. The spectrum exhibits very clear evidence of a pseudo-Jahn-Teller distortion of the normally hexagonal benzene molecule upon excitation to the triplet state. Factor group splitting of the 0 – 0 and 0 – 0 + v exciton bands have also been observed. The position of the mean of the 0 – 0 exciton band of C6H6 when compared to the phosphorescence origin of a C6H6 guest in a C6D6 host crystal indicates that the “static” intermolecular interactions between guest and hose are different for C6H6 and C6D6. Further investigation of this difference using the currently accepted theory of isotopic mixed crystals indicates that there is a 2cm-1 shift of the ideal mixed crystal level per hot deuterium atom. This shift is observed for both the singlet and triplet states of benzene.

IV. 3E1u1A1g, Absorption Spectra

The 3E1u1A1g absorption spectra of C6H6 and C6D6 at 4.2˚K have been obtained using the phosphorescence photoexcitation technique. In both cases the spectrum is broad and structureless as would be expected from the line broadening calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we investigate the polarization effect (linear, elliptical and circular) on the two-photon absorption (2PA) properties of a chiral compound based in azoaromatic moieties using the femtosecond Z-scan technique with low repetition rate and low pulse energy. We observed a strong 2PA modulation between 800 nm and 960 nm as a function the polarization changes from linear through elliptical to circular. Such results were interpreted employing the sum-over-essential states approach, which allowed us to model the 2PA circular-linear dichroism effect and to identifier the overlapping of the excited electronic states responsible by the 2PA allowed band. (C) 2012 Optical Society of America