983 resultados para exact results
Resumo:
Purpose The previous literature on Bland-Altman analysis only describes approximate methods for calculating confidence intervals for 95% Limits of Agreement (LoAs). This paper describes exact methods for calculating such confidence intervals, based on the assumption that differences in measurement pairs are normally distributed. Methods Two basic situations are considered for calculating LoA confidence intervals: the first where LoAs are considered individually (i.e. using one-sided tolerance factors for a normal distribution); and the second, where LoAs are considered as a pair (i.e. using two-sided tolerance factors for a normal distribution). Equations underlying the calculation of exact confidence limits are briefly outlined. Results To assist in determining confidence intervals for LoAs (considered individually and as a pair) tables of coefficients have been included for degrees of freedom between 1 and 1000. Numerical examples, showing the use of the tables for calculating confidence limits for Bland-Altman LoAs, have been provided. Conclusions Exact confidence intervals for LoAs can differ considerably from Bland and Altman’s approximate method, especially for sample sizes that are not large. There are better, more precise methods for calculating confidence intervals for LoAs than Bland and Altman’s approximate method, although even an approximate calculation of confidence intervals for LoAs is likely to be better than none at all. Reporting confidence limits for LoAs considered as a pair is appropriate for most situations, however there may be circumstances where it is appropriate to report confidence limits for LoAs considered individually.
Resumo:
The flow of a micropolar fluid in an orthogonal rheometer is considered. It is shown that an infinite number of exact solutions characterizing asymmetric motions are possible. The expressions for pressure in the fluid, the components of the forces and couples acting on the plates are obtained. The effect of microrotation on the flow is brought out by considering numerical results for the case of coaxially rotating disks.
Resumo:
A new class of exact solutions of plane gasdynamic equations is found which describes piston-driven shocks into non-uniform media. The governing equations of these flows are taken in the coordinate system used earlier by Ustinov, and their similarity form is determined by the method of infinitesimal transformations. The solutions give shocks with velocities which either decay or grown in a finite or infinite time depending on the density distribution in the ambient medium, although their strength remains constant. The results of the present study are related to earlier investigations describing the propagation of shocks of constant strength into non-uniform media.
Resumo:
Exact expressions for the response functions of kinetic Ising models are reported. These results valid for magnetisation in one dimension are based on a general formalism that yield the earlier results of Glauber and Kimball as special cases.
Resumo:
A three-dimensional linear, small deformation theory of elasticity solution by the direct method is developed for the free vibration of simply-supported, homogeneous, isotropic, thick rectangular plates. The solution is exact and involves determining a triply infinite sequence of eigenvalues from a doubly infinite set of closed form transcendental equations. As no restrictions are placed on the thickness variation of stresses or displacements, this formulation yields a triply infinite spectrum of frequencies, instead of only one doubly infinite spectrum by thin plate theory and three doubly infinite spectra by Mindlin's thick plate theory. Further, the present analysis yields symmetric thickness modes which neither of the approximate theories can identify. Some numerical results from the two approximate theories are compared with those from the present solution and some important conclusions regarding the effect of the assumptions made in the approximate theories are drawn. The thickness variations of stresses and displacements are also discussed. The analysis is readily extended for laminated plates of isotropic materials. Numerical results are also given for three-ply laminates, and are used to assess the accuracy of thin plate theory predictions for laminates. Extension to general lateral surface conditions and forced vibrations is indicated.
Resumo:
We have found an exact similarity solution of the point explosion problem in the case when the total energy of the shock wave that is produced is not constant but decreases with time and when the loss due to radiation escape is significant. We have compared the results of our exact solution with those of exact numerical solutions of Elliot and Wang and have explained the cause why our solution differs from theirs in certain aspects.
Resumo:
In this paper an exact three-dimensional analysis for free vibrations of a class of simply-supported viscoelastic rectangular plates is given. The characteristic equation defining the eigenvalues is of closed form. Some numerical results are presented for standard linear solids. Results from thin plate and Mindlin theories are also given for the purpose of comparison.
Resumo:
A distributed system is a collection of networked autonomous processing units which must work in a cooperative manner. Currently, large-scale distributed systems, such as various telecommunication and computer networks, are abundant and used in a multitude of tasks. The field of distributed computing studies what can be computed efficiently in such systems. Distributed systems are usually modelled as graphs where nodes represent the processors and edges denote communication links between processors. This thesis concentrates on the computational complexity of the distributed graph colouring problem. The objective of the graph colouring problem is to assign a colour to each node in such a way that no two nodes connected by an edge share the same colour. In particular, it is often desirable to use only a small number of colours. This task is a fundamental symmetry-breaking primitive in various distributed algorithms. A graph that has been coloured in this manner using at most k different colours is said to be k-coloured. This work examines the synchronous message-passing model of distributed computation: every node runs the same algorithm, and the system operates in discrete synchronous communication rounds. During each round, a node can communicate with its neighbours and perform local computation. In this model, the time complexity of a problem is the number of synchronous communication rounds required to solve the problem. It is known that 3-colouring any k-coloured directed cycle requires at least ½(log* k - 3) communication rounds and is possible in ½(log* k + 7) communication rounds for all k ≥ 3. This work shows that for any k ≥ 3, colouring a k-coloured directed cycle with at most three colours is possible in ½(log* k + 3) rounds. In contrast, it is also shown that for some values of k, colouring a directed cycle with at most three colours requires at least ½(log* k + 1) communication rounds. Furthermore, in the case of directed rooted trees, reducing a k-colouring into a 3-colouring requires at least log* k + 1 rounds for some k and possible in log* k + 3 rounds for all k ≥ 3. The new positive and negative results are derived using computational methods, as the existence of distributed colouring algorithms corresponds to the colourability of so-called neighbourhood graphs. The colourability of these graphs is analysed using Boolean satisfiability (SAT) solvers. Finally, this thesis shows that similar methods are applicable in capturing the existence of distributed algorithms for other graph problems, such as the maximal matching problem.
Resumo:
The low-lying singlets and triplets of biphenyl are obtained exactly within the PPP model using the diagrammatic valence bond method. The energy gaps within the singlet manifold as well as the lowest singlet-triplet gap are found to be in good agreement with experimental results. The two weak absorptions between 4·1 and 4·2 eV reported experimentally are attributed to the two states lying below the optical gap that become weakly allowed on breaking electron-hole and inversion symmetries. The observed blue shift of the spectral lines, attributed to a change in dihedral angle, on going from crystalline to solution to vapour phase is also well reproduced within the PPP model. The bond orders show that the ground singlet state is benzenoidal while the dipole excited state as well as the lowest triplet state are quinonoidal and planar. Comparison with the experimental spin densities and the fine structure constants D and E in the triplet state point to slightly weaker correlations than assumed by the PPP model. The introduction of a 1-8 bond to mimic poly(paraphenylene)s gives an optical gap that is in good agreement with experiment.
Resumo:
We consider functions that map the open unit disc conformally onto the complement of a bounded convex set. We call these functions concave univalent functions. In 1994, Livingston presented a characterization for these functions. In this paper, we observe that there is a minor flaw with this characterization. We obtain certain sharp estimates and the exact set of variability involving Laurent and Taylor coefficients for concave functions. We also present the exact set of variability of the linear combination of certain successive Taylor coefficients of concave functions.
Resumo:
The pi-electronic structure of anthracene is discussed by combining exact solutions of the Pariser-Parr-Pople (PPP) model and semiempirical PM3 calculations. Symmetry adaptation of the 2.8 million singlet valence-bond (VB) diagrams is explicitly demonstrated for D2h and electron-hole symmetry. Standard PPP parameters provide a comprehensive fit to one- and two-photon anthracene spectra and intensities up to the strong 1 B-1(3u)-absorption at 5.24 eV, the 10th excited state in the dense correlated spectrum, and indicate a reassignment of two-photon absorptions. The singlet-triplet gap and fine-structure constants also agree with experiment. Fully-relaxed PM3 geometries are obtained for the anthracene ground state and for singlet, triplet, and charged bipolarons. The PM3 bond lengths correlate well with PPP bond orders for the idealized structure. Single-determinantal PM3 excitation and relaxation energies for bipolarons are consistent with exact PPP results and contrast all-valence electron with pi-electron calculations. Several correlation effects are noted in the rich pi-spectra of anthracene in connection with improved PPP modeling of conjugated molecules and polymers.
Resumo:
his paper addresses the problem of minimizing the number of columns with superdiagonal nonzeroes (viz., spiked columns) in a square, nonsingular linear system of equations which is to be solved by Gaussian elimination. The exact focus is on a class of min-spike heuristics in which the rows and columns of the coefficient matrix are first permuted to block lower-triangular form. Subsequently, the number of spiked columns in each irreducible block and their heights above the diagonal are minimized heuristically. We show that ifevery column in an irreducible block has exactly two nonzeroes, i.e., is a doubleton, then there is exactly one spiked column. Further, if there is at least one non-doubleton column, there isalways an optimal permutation of rows and columns under whichnone of the doubleton columns are spiked. An analysis of a few benchmark linear programs suggests that singleton and doubleton columns can abound in practice. Hence, it appears that the results of this paper can be practically useful. In the rest of the paper, we develop a polynomial-time min-spike heuristic based on the above results and on a graph-theoretic interpretation of doubleton columns.
Resumo:
An exact representation of N-wave solutions for the non-planar Burgers equation u(t) + uu(x) + 1/2ju/t = 1/2deltau(xx), j = m/n, m < 2n, where m and n are positive integers with no common factors, is given. This solution is asymptotic to the inviscid solution for Absolute value of x < square-root (2Q0 t), where Q0 is a function of the initial lobe area, as lobe Reynolds number tends to infinity, and is also asymptotic to the old age linear solution, as t tends to infinity; the formulae for the lobe Reynolds numbers are shown to have the correct behaviour in these limits. The general results apply to all j = m/n, m < 2n, and are rather involved; explicit results are written out for j = 0, 1, 1/2, 1/3 and 1/4. The case of spherical symmetry j = 2 is found to be 'singular' and the general approach set forth here does not work; an alternative approach for this case gives the large time behaviour in two different time regimes. The results of this study are compared with those of Crighton & Scott (1979).
Resumo:
Model exact static and frequency-dependent polarizabilities, static second hyperpolarizabilities and THG coefficents of cumulenes and polyenynes, calculated within the correlated Pariser-Parr-Pople (PPP) model defined over the pi-framework are reported and compared with the results for the polyenes. It is found that for the same chain length, the polarizabilities and THG coefficients of the cumulenes are largest and those of the polyenynes smallest with the polyenes having an intermediate value. The optical gap of the infinite cumulene is lowest (0.75 eV) and is associated with a low transition dipole moment for an excitation involving transfer of an electron between the two orthogonal conjugated pi-systems. The polyenynes have the largest optical gap (4.37 eV), with the magnitude being nearly independent of the chain length. This excitation involves charge transfer between the conjugated bonds in the terminal triple bond. Chain length and frequency dependence of alpha(ij) and gamma(ijkl) of these systems are also reported. The effect of a heteroatom on the polarizability and THG coefficients of acetylenic systems is also reported. It has been found that the presence of the heteroatom reduces the polarizability and THG coefficients of these systems, an effect opposite to that found in the polyenes and cyanine dyes. This result has been associated with the different nature of the charge transfer in the acetylenic systems.
Resumo:
We address the problem of exact complex-wave reconstruction in digital holography. We show that, by confining the object-wave modulation to one quadrant of the frequency domain, and by maintaining a reference-wave intensity higher than that of the object, one can achieve exact complex-wave reconstruction in the absence of noise. A feature of the proposed technique is that the zero-order artifact, which is commonly encountered in hologram reconstruction, can be completely suppressed in the absence of noise. The technique is noniterative and nonlinear. We also establish a connection between the reconstruction technique and homomorphic signal processing, which enables an interpretation of the technique from the perspective of deconvolution. Another key contribution of this paper is a direct link between the reconstruction technique and the two-dimensional Hilbert transform formalism proposed by Hahn. We show that this connection leads to explicit Hilbert transform relations between the magnitude and phase of the complex wave encoded in the hologram. We also provide results on simulated as well as experimental data to validate the accuracy of the reconstruction technique. (C) 2011 Optical Society of America