975 resultados para estimation risk
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
The elastic properties of the arterial wall have been the subject of physiological, clinical and biomedical research for many years. There is convincing evidence that the elastic properties of the large arteries are seriously impaired in the presence of cardiovascular disease (CVD), due to alterations in the intrinsic structural and functional characteristics of vessels [1]. Early detection of changes in the elastic modulus of arteries would provide a powerful tool for both monitoring patients at high cardiovascular risk and testing the effects of pharmaceuticals aimed at stabilizing existing plaques by stiffening them or lowering the lipids.
Resumo:
PURPOSE: Female athletes, in response to intensive training, competition stress and a lean, athletic physique, are at increased risk of altered hypothalamic-pituitary ovarian (HPO) axis function associated with menstrual cycle disturbance and reduced secretion of the ovarian hormones estrogen and progesterone. Because there is evidence suggesting possible detrimental effects on skeletal health associated with deficiencies in these hormones, a suitable means to asses ovarian hormone concentrations in at risk athletes is needed. The aim of this study was to evaluate a simple, economical means to monitor the ovarian hormone production in athletes, in the setting of intensive training. METHODS: Subjects comprised 14 adolescent rowers, 12 lightweight rowers, and two groups of 10 matched control subjects. Ovarian function was monitored during the competition season by estimation of urinary excretion of estrone glucuronide (E1G) and pregnanediol glucuronide (PdG), enabling the menstrual cycles to be classified as ovulatory or anovulatory. RESULTS: Results indicated 35% and 75% of schoolgirl and lightweight rowers had anovulatory menstrual cycles, respectively. These findings were highlighted by significantly lower excretion of E1G and PdG during phases of intensive training in both the lightweight and schoolgirl rowers, compared with the control subjects. CONCLUSION: It was concluded that the urinary E1G and PdG assays were an effective means to assess the influence of intense training on ovarian hormone concentrations in at risk athletes. It is recommended that this technique be applied more widely as a means of early detection of athletes with low estrogen and progesterone levels, in an attempt to avoid detrimental influences on skeletal health.
Resumo:
Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases.
Resumo:
The number of genetic factors associated with common human traits and disease is increasing rapidly, and the general public is utilizing affordable, direct-to-consumer genetic tests. The results of these tests are often in the public domain. A combination of factors has increased the potential for the indirect estimation of an individual's risk for a particular trait. Here we explain the basic principals underlying risk estimation which allowed us to test the ability to make an indirect risk estimation from genetic data by imputing Dr. James Watson's redacted apolipoprotein E gene (APOE) information. The principles underlying risk prediction from genetic data have been well known and applied for many decades, however, the recent increase in genomic knowledge, and advances in mathematical and statistical techniques and computational power, make it relatively easy to make an accurate but indirect estimation of risk. There is a current hazard for indirect risk estimation that is relevant not only to the subject but also to individuals related to the subject; this risk will likely increase as more detailed genomic data and better computational tools become available.
Resumo:
In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.
Resumo:
Hendra virus is a highly pathogenic novel paramyxovirus causing sporadic fatal infection in horses and humans in Australia. Species of fruit-bats (genus Pteropus), commonly known as flying-foxes, are the natural host of the virus. We undertook a survey of horse owners in the states of Queensland and New South Wales, Australia to assess the level of adoption of recommended risk management strategies and to identify impediments to adoption. Survey questionnaires were completed by 1431 respondents from the target states, and from a spectrum of industry sectors. Hendra virus knowledge varied with sector, but was generally limited, with only 13% of respondents rating their level of knowledge as high or very high. The majority of respondents (63%) had seen their state’s Hendra virus information for horse owners, and a similar proportion found the information useful. Fifty-six percent of respondents thought it moderately, very or extremely likely that a Hendra virus case could occur in their area, yet only 37% said they would consider Hendra virus if their horse was sick. Only 13% of respondents stabled their horses overnight, although another 24% said it would be easy or very easy to do so, but hadn’t done so. Only 13% and 15% of respondents respectively had horse feed bins and water points under solid cover. Responses varied significantly with state, likely reflecting different Hendra virus history. The survey identified inconsistent awareness and/or adoption of available knowledge, confusion in relation to Hendra virus risk perception, with both over-and under-estimation of true risk, and lag in the uptake of recommended risk minimisation strategies, even when these were readily implementable. However, we also identified frustration and potential alienation by horse owners who found the recommended strategies impractical, onerous and prohibitively expensive. The insights gained from this survey have broader application to other complex risk-management scenarios.
Resumo:
The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.
Resumo:
Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and the evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model (CTM) simulations and ground measurements from 79 different countries to produce new global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990-2010 and the year 2013. These estimates were then applied to assess population-weighted mean concentrations for 1990 – 2013 for each of 188 countries. In 2013, 87% of the world’s population lived in areas exceeding the World Health Organization (WHO) Air Quality Guideline of 10 μg/m3 PM2.5 (annual average). Between 1990 and 2013, decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries, in contrast to increases estimated in South Asia, throughout much of Southeast Asia, and in China. Population-weighted mean concentrations of ozone increased in most countries from 1990 - 2013, with modest decreases in North America, parts of Europe, and several countries in Southeast Asia.
Resumo:
Financing trade between economic agents located in different countries is affected by many types of risks, resulting from incomplete information about the debtor, the problems of enforcing international contracts, or the prevalence of political and financial crises. Trade is important for economic development and the availability of trade finance is essential, especially for developing countries. Relatively few studies treat the topic of political risk, particularly in the context of international lending. This thesis explores new ground to identify links between political risk and international debt defaults. The core hypothesis of the study is that the default probability of debt increases with increasing political risk in the country of the borrower. The thesis consists of three essays that support the hypothesis from different angles of the credit evaluation process. The first essay takes the point of view of an international lender assessing the credit risk of a public borrower. The second investigates creditworthiness assessment of companies. The obtained results are substantiated in the third essay that deals with an extensive political risk survey among finance professionals in developing countries. The financial instruments of core interest are export credit guaranteed debt initiated between the Export Credit Agency of Finland and buyers in 145 countries between 1975 and 2006. Default events of the foreign credit counterparts are conditioned on country-specific macroeconomic variables, corporate-specific accounting information as well as political risk indicators from various international sources. Essay 1 examines debt issued to government controlled institutions and conditions public default events on traditional macroeconomic fundamentals, in addition to selected political and institutional risk factors. Confirming previous research, the study finds country indebtedness and the GDP growth rate to be significant indicators of public default. Further, it is shown that public defaults respond to various political risk factors. However, the impact of the risk varies between countries at different stages of economic development. Essay 2 proceeds by investigating political risk factors as conveivable drivers of corporate default and uses traditional accounting variables together with new political risk indicators in the credit evaluation of private debtors. The study finds links between corporate default and leverage, as well as between corporate default and the general investment climate and measeures of conflict in the debtor country. Essay 3 concludes the thesis by offering survey evidence on the impact of political risk on debt default, as perceived and experienced by 103 finance professionals in 38 developing countries. Taken together, the results of the thesis suggest that various forms of political risk are associated with international debt defaults and continue to pose great concerns for both international creditors and borrowers in developing countries. The study provides new insights on the importance of variable selection in country risk analysis, and shows how political risk is actually perceived and experienced in the riskier, often lower income countries of the global economy.
Resumo:
This paper uses the Value-at-Risk approach to define the risk in both long and short trading positions. The investigation is done on some major market indices(Japanese, UK, German and US). The performance of models that takes into account skewness and fat-tails are compared to symmetric models in relation to both the specific model for estimating the variance, and the distribution of the variance estimate used as input in the VaR estimation. The results indicate that more flexible models not necessarily perform better in predicting the VaR forecast; the reason for this is most probably the complexity of these models. A general result is that different methods for estimating the variance are needed for different confidence levels of the VaR, and for the different indices. Also, different models are to be used for the left respectively the right tail of the distribution.
Resumo:
Merton's model views equity as a call option on the asset of the firm. Thus the asset is partially observed through the equity. Then using nonlinear filtering an explicit expression for likelihood ratio for underlying parameters in terms of the nonlinear filter is obtained. As the evolution of the filter itself depends on the parameters in question, this does not permit direct maximum likelihood estimation, but does pave the way for the `Expectation-Maximization' method for estimating parameters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We address the problem of speech enhancement using a risk- estimation approach. In particular, we propose the use the Stein’s unbiased risk estimator (SURE) for solving the problem. The need for a suitable finite-sample risk estimator arises because the actual risks invariably depend on the unknown ground truth. We consider the popular mean-squared error (MSE) criterion first, and then compare it against the perceptually-motivated Itakura-Saito (IS) distortion, by deriving unbiased estimators of the corresponding risks. We use a generalized SURE (GSURE) development, recently proposed by Eldar for MSE. We consider dependent observation models from the exponential family with an additive noise model,and derive an unbiased estimator for the risk corresponding to the IS distortion, which is non-quadratic. This serves to address the speech enhancement problem in a more general setting. Experimental results illustrate that the IS metric is efficient in suppressing musical noise, which affects the MSE-enhanced speech. However, in terms of global signal-to-noise ratio (SNR), the minimum MSE solution gives better results.
Resumo:
Probable maximum precipitation (PMP) is a theoretical concept that is widely used by hydrologists to arrive at estimates for probable maximum flood (PMF) that find use in planning, design and risk assessment of high-hazard hydrological structures such as flood control dams upstream of populated areas. The PMP represents the greatest depth of precipitation for a given duration that is meteorologically possible for a watershed or an area at a particular time of year, with no allowance made for long-term climatic trends. Various methods are in use for estimation of PMP over a target location corresponding to different durations. Moisture maximization method and Hershfield method are two widely used methods. The former method maximizes the observed storms assuming that the atmospheric moisture would rise up to a very high value estimated based on the maximum daily dew point temperature. On the other hand, the latter method is a statistical method based on a general frequency equation given by Chow. The present study provides one-day PMP estimates and PMP maps for Mahanadi river basin based on the aforementioned methods. There is a need for such estimates and maps, as the river basin is prone to frequent floods. Utility of the constructed PMP maps in computing PMP for various catchments in the river basin is demonstrated. The PMP estimates can eventually be used to arrive at PMF estimates for those catchments. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
This paper considers the basic present value model of interest rates under rational expectations with two additional features. First, following McCallum (1994), the model assumes a policy reaction function where changes in the short-term interest rate are determined by the long-short spread. Second, the short-term interest rate and the risk premium processes are characterized by a Markov regime-switching model. Using US post-war interest rate data, this paper finds evidence that a two-regime switching model fits the data better than the basic model. The estimation results also show the presence of two alternative states displaying quite different features.